- Award ID(s):
- 2304884
- PAR ID:
- 10539214
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 146
- Issue:
- 1
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 884 to 891
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Multimodal mechanophores that react under mechanical force to produce discrete product states with uniquely coupled absorption properties are interesting targets for the design of force-sensing polymers. Herein, we investigate the reactivity of a 2H-bis-naphthopyran mechanophore that generates thermally persistent mono-merocyanine and bis-merocyanine products upon mechanical activation in solution using ultrasonication, distinct from the thermally reversible products generated photochemically. We demonstrate that a force-mediated ester C(O)–O bond scission reaction following ring opening establishes an intramolecular hydrogen bond, locking one merocyanine subunit in the open form. Model compound studies suggest that this locked subunit confers remarkable thermal stability to bis-merocyanine isomers possessing a trans exocyclic alkene on the other subunit, implicating the formation of an unusual trans merocyanine isomer as the product of mechanochemical activation. Density functional theory calculations unexpectedly predict a thermally reversible retro-cyclization reaction of the bis-merocyanine species that could explain the mechanochemical generation of the unusual trans merocyanine isomer.more » « less
-
In recent decades, more than 100 different mechanophores with a broad range of activation forces have been developed. For various applications of mechanophores in polymer materials, it is crucial to selectively activate the mechanophores with high efficiency, avoiding nonspecific bond scission of the material. In this study, we embedded cyclobutane-based mechanophore cross-linkers (I and II) with varied activation forces (fa) in the first network of the double network hydrogels and quantitively investigated the activation selectivity and efficiency of these mechanophores. Our findings revealed that cross-linker I, with a lower activation force relative to the bonds in the polymer main chain (fa-I/fa-chain = 0.8 nN/3.4 nN), achieved efficient activation with 100% selectivity. Conversely, an increase of the activation force of mechanophore II (fa-II/fa-chain = 2.5 nN/3.4 nN) led to a significant decrease of its activation efficiency, accompanied by a substantial number of nonspecific bond scission events. Furthermore, with the coexistence of two cross-linkers, significantly different activation forces resulted in the almost complete suppression of the higher-force one (i.e., I and III, fa-I/fa-III = 0.8 nN/3.4 nN), while similar activation forces led to simultaneous activations with moderate efficiencies (i.e., I and IV, fa-I/fa-IV = 0.8 nN/1.6 nN). These findings provide insights into the prevention of nonspecific bond rupture during mechanophore activation and enhance our understanding of the damage mechanism within polymer networks when using mechanophores as detectors. Besides, it establishes a principle for combining different mechanophores to design multiple mechanoresponsive functional materials.more » « less
-
Mechanical force drives distinct chemical reactions; yet, its vectoral nature results in complicated coupling with reaction trajectories. Here, we utilize a physical organic model inspired by the classical Morse potential and its differential forms to identify effective force constant (keff) and reaction energy (ΔE) as key molecular features that govern mechanochemical kinetics. Through a comprehensive experimental and computational investigation with four norborn-2-en-7-one (NEO) mechanophores, we establish the relationship between these features and the force-dependent energetic changes along the reaction pathways. We show that the complex kinetic behavior of the tensioned bonds is generally and quantitatively predicted by a simple multivariate linear regression based on the two easily computed features with a straightforward workflow. These results demonstrate a general mechanistic framework for mechanochemical reactions under tensile force and provide a highly accessible tool for the large-scale computational screening in the design of mechanophores.more » « less
-
Polymers that release small molecules in response to mechanical force are promising candidates as next-generation on-demand delivery systems. Despite advancements in the development of mechanophores for releasing diverse payloads through careful molecular design, the availability of scaffolds capable of discharging biomedically significant cargos in substantial quantities remains scarce. In this report, we detail a nonscissile mechanophore built from an 8-thiabicyclo[3.2.1]octane 8,8-dioxide (TBO) motif that releases one equivalent of sulfur dioxide (SO2) from each repeat unit. The TBO mechanophore exhibits high thermal stability but is activated mechanochemically using solution ultrasonication in either organic solvent or aqueous media with up to 63% efficiency, equating to 206 molecules of SO2 released per 143.3 kDa chain. We quantified the mechanochemical reactivity of TBO by single-molecule force spectroscopy and resolved its single-event activation. The force-coupled rate constant for TBO opening reaches ∼9.0 s–1 at ∼1520 pN, and each reaction of a single TBO domain releases a stored length of ∼0.68 nm. We investigated the mechanism of TBO activation using ab initio steered molecular dynamic simulations and rationalized the observed stereoselectivity. These comprehensive studies of the TBO mechanophore provide a mechanically coupled mechanism of multi-SO2 release from one polymer chain, facilitating the translation of polymer mechanochemistry to potential biomedical applications.more » « less
-
Abstract Allosteric control of reaction thermodynamics is well understood, but the mechanisms by which changes in local geometries of receptor sites lower activation reaction barriers in electronically uncoupled, remote reaction moieties remain relatively unexplored. Here we report a molecular scaffold in which the rate of thermal E-to-Z isomerization of an alkene increases by a factor of as much as 104in response to fast binding of a metal ion to a remote receptor site. A mechanochemical model of the olefin coupled to a compressive harmonic spring reproduces the observed acceleration quantitatively, adding the studied isomerization to the very few reactions demonstrated to be sensitive to extrinsic compressive force. The work validates experimentally the generalization of mechanochemical kinetics to compressive loads and demonstrates that the formalism of force-coupled reactivity offers a productive framework for the quantitative analysis of the molecular basis of allosteric control of reaction kinetics. Important differences in the effects of compressive vs. tensile force on the kinetic stabilities of molecules are discussed.