Curricula enhanced through the use of digital games can benefit students in their interest and learning of Science, Technology, Engineering, and Mathematics (STEM) concepts. Elementary teachers’ likelihood to embrace and use game-enhanced instructional approaches with integrity in mathematics has not been extensively studied. In this study, a sequential mixed methods design was employed to investigate the feasibility of a game-enhanced supplemental fraction curriculum in elementary classrooms, including how teachers implemented the curriculum, their perspectives and experiences as they used it, and their students’ resulting fraction learning and STEM interest. Teachers implemented the supplemental curriculum with varying adherence but had common experiences throughout their implementation. Teachers expressed experiences related to (1) time, (2) curriculum being too different, and (3) too difficult for students. Their strategies to handle those phenomena varied. Teachers that demonstrated higher adherence to the game-enhanced supplemental fraction curriculum had students that displayed higher STEM interest and fraction learning. While this study helps to better understand elementary teachers’ experiences with game-enhanced mathematics curricula, implications for further research and program development are also discussed.
This content will become publicly available on September 2, 2025
Empowering Latine elementary school students with disabilities: computer programming through culturally sustaining curriculum
Background and Context: The study was conducted in a special
education classroom in an elementary school with multilingual
Latine students, utilizing a computer science curriculum focused
on community-based environmental literacy.
Objective: This study explores the experiences of diverse elementary
students with disabilities in learning computer programming
and identifies instructional strategies that enhance their learning
within a culturally sustaining curriculum.
Method: An exploratory case study approach was used to examine
students’ learning experiences and teachers’ instructional strategies
during curriculum implementation.
Findings: Students who typically did not engage with peers collaborated
effectively, and those with behavioral and performance
difficulties exhibited heightened engagement. Instructional strategies
included multisensory engagement and connecting environmental
and computational concepts to real-life situations.
Implications: The result underscore how a culturally sustaining
computer science curriculum can empower diverse students, foster
inclusivity, and leverage their strengths through effective teaching
practices.
more »
« less
- Award ID(s):
- 2317832
- NSF-PAR ID:
- 10539313
- Publisher / Repository:
- Taylor & Francis
- Date Published:
- Journal Name:
- Computer Science Education
- ISSN:
- 0899-3408
- Page Range / eLocation ID:
- 1 to 26
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Three Northern Arapaho and Eastern Shoshone–serving districts formed a researcher–practitioner partnership with the Wyoming Department of Education, the American Institutes for Research®, and BootUp Professional Development to advance the computer science (CS) education of their elementary students in ways that strengthen their Indigenous identities and knowledges. In this paper, we share experiences from 2019 to 2022 with our curriculum development, professional development (PD), and classroom implementation. The researcher–practitioner partnership developed student and teacher materials to support elementary CS lessons aligned to Wyoming’s CS standards and “Indian Education for All” social studies standards. Indigenous community members served as experts to codesign culturally relevant resources. Teachers explored the curriculum resources during three 4-hour virtual and in-person PD sessions. The sessions were designed to position the teachers as designers of CS projects they eventually implemented in their classrooms. Projects completed by students included simulated interviews with Indigenous heroes and animations of students introducing themselves in their Native languages. Teachers described several positive effects of the Scratch lessons on students, including high engagement, increased confidence, and successful application of several CS concepts. The teachers also provided enthusiastic positive reviews of the ways the CS lessons allowed students to explore their Indigenous identities while preparing to productively use technology in their futures. The Wind River Elementary CS Collaborative is one model for how a researcher–practitioner partnership can utilize diverse forms of expertise, ways of knowing, and Indigenous language to engage in curriculum design, PD, and classroom implementation that supports culturally sustaining CS pedagogies in Indigenous communities.more » « less
-
Abstract: Developing student interest is critical to supporting student learning in computer science. Research indicates that student interest is a key predictor of persistence and achievement. While there is a growing body of work on developing computing identities for diverse students, little research focuses on early exposure to develop multilingual students’ interest in computing. These students represent one of the fastest growing populations in the US, yet they are dramatically underrepresented in computer science education. This study examines identity development of upper elementary multilingual students as they engage in a year-long computational thinking curriculum, and follows their engagement across multiple settings (i.e., school, club, home, community). Findings from pre- and -post surveys of identity showed significant differences favoring students’ experiences with computer science, their perceptions of computer science, their perceptions of themselves as computer scientists, and their family support for computer science. Findings from follow-up interviews and prior research suggest that tailored instruction provides opportunities for connections to out-of-school learning environments with friends and family that may shift students’ perceptions of their abilities to pursue computer science and persist when encountering challenges.more » « less
-
null (Ed.)The field of computer science continues to lack diverse representation from women and racially minoritized individuals. One way to address the discrepancies in representation is through systematic changes in computer science education from a young age. Pedagogical and instructional changes are needed to promote meaningful and equitable learning that engage students with rigorous and inclusive curricula. We developed an equity-focused professional development program for teachers that promotes culturally responsive pedagogy in the context of computer science education. This paper provides an overview of our culturally responsive frameworks and an examination of how teachers conceptualized and integrated culturally responsive pedagogy in their classrooms. Findings revealed that teachers were consistently planning to implement a wide range of culturally responsive instructional and pedagogical practices into their classrooms.more » « less
-
The field of computer science continues to lack diverse representation from women and racially minoritized individuals. One way to address the discrepancies in representation is through systematic changes in computer science education from a young age. Pedagogical and instructional changes are needed to promote meaningful and equitable learning that engages students with rigorous and inclusive curricula. We developed an equity-focused professional development program for teachers that promotes culturally responsive pedagogy in the context of computer science education. This study provides an overview of our culturally responsive framework and a qualitative examination of how teachers (n=9) conceptualized and applied culturally responsive pedagogy in their classrooms. Drawing from grounded theory and lesson assessment rubrics, we developed a codebook to analyze teacher interviews, lesson plans, and questionnaire responses. Findings revealed that, following their participation in professional development, teachers were consistently planning to implement a wide range of culturally responsive instructional and pedagogical practices capable of promoting diversity, equity, and inclusion in computer science education.more » « less