The efficient and timely optimization of microarchitecture for a target application is hindered by the long evaluation runtime of a design candidate, creating a serious burden. To tackle this problem, researchers have started using learning algorithms such as graph neural networks (GNNs) to accelerate the process by developing a surrogate of the target tool. However, challenges arise when developing such models for HLS tools due to the program's long dependency range and deeply coupled input program and transformations (i.e., pragmas). To address them, in this paper, we present HARP (Hierarchical Augmentation for Representation with Pragma optimization) with a novel hierarchical graph representation of the HLS design by introducing auxiliary nodes to include high-level hierarchical information about the design. Additionally, HARP decouples the representation of the program and its transformations and includes a neural pragma transformer (NPT) approach to facilitate a more systematic treatment of this process. Our proposed graph representation and model architecture of HARP not only enhance the performance of the model and design space exploration based on it but also improve the model's transfer learning capability, enabling easier adaptation to new environments.
more »
« less
Robust GNN-Based Representation Learning for HLS
The efficient and timely optimization of microarchitecture for a target application is hindered by the long evaluation runtime of a design candidate, creating a serious burden. To tackle this problem, researchers have started using learning algorithms such as graph neural networks (GNNs) to accelerate the process by developing a surrogate of the target tool. However, challenges arise when developing such models for HLS tools due to the program's long dependency range and deeply coupled input program and transformations (i.e., pragmas). To address them, in this paper, we present HARP ( H ierarchical A ugmentation for R epresentation with P ragma optimization) with a novel hierarchical graph representation of the HLS design by introducing auxiliary nodes to include high-level hierarchical information about the design. Additionally, HARP decouples the representation of the program and its transformations and includes a neural pragma transformer (NPT) approach to facilitate a more systematic treatment of this process. Our proposed graph representation and model architecture of HARP not only enhance the performance of the model and design space exploration based on it but also improve the model's transfer learning capability, enabling easier adaptation to new environments 1 1 All materials available at https://github.com/UCLA-VAST/HARP.
more »
« less
- PAR ID:
- 10539416
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-2225-5
- Page Range / eLocation ID:
- 1 to 9
- Format(s):
- Medium: X
- Location:
- San Francisco, CA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
High-level synthesis (HLS) is an automated design process that transforms high-level code into optimized hardware designs, enabling rapid development of efficient hardware accelerators for various applications such as image processing, machine learning, and signal processing. To achieve optimal performance, HLS tools rely on pragmas, which are directives inserted into the source code to guide the synthesis process, and these pragmas can have various settings and values that significantly impact the resulting hardware design. State-of the-art ML-based HLS methods, such as harp, first train a deep learning model, typically based on graph neural networks (GNNs) applied to graph-based representations of the source code and its pragmas. They then perform design space exploration (DSE) to explore the pragma design space, rank candidate designs using the trained model, and return the top designs as the final designs. However, traditional DSE methods face challenges due to the highly nonlinear relationship between pragma settings and performance metrics, along with complex interactions between pragmas that affect performance in non-obvious ways. To address these challenges, we propose compareXplore, a novel approach that learns to compare hardware designs for effective HLS optimization. compareXplore introduces a hybrid loss function that combines pairwise preference learning with pointwise performance prediction, enabling the model to capture both relative preferences and absolute performance values. Moreover, we introduce a novel Node Difference Attention module that focuses on the most informative differences between designs, enhancing the model’s ability to identify critical pragmas impacting performance. compareXplore adopts a two-stage DSE approach, where a pointwise prediction model is used for the initial design pruning, followed by a pairwise comparison stage for precise performance verification. Experimental results demonstrate that compareXplore achieves significant improvements in ranking metrics and generates high quality HLS results for the selected designs, outperforming the existing state-of-the-art method.more » « less
-
High-level synthesis (HLS) is a widely used tool in designing Field Programmable Gate Array (FPGA). HLS enables FPGA design with software programming languages by compiling the source code into an FPGA circuit. The source code includes a program (called ``kernel'') and several pragmas that instruct hardware synthesis, such as parallelization, pipeline, etc. While it is relatively easy for software developers to design the program, it heavily relies on hardware knowledge to design the pragmas, posing a big challenge for software developers. Recently, different machine learning algorithms, such as GNNs, have been proposed to automate the pragma design via performance prediction. However, when applying the trained model on new kernels, the significant domain shift often leads to unsatisfactory performance. We propose a more domain-generalizable model structure: a two-level hierarchical Mixture of Experts (MoE), that can be flexibly adapted to any GNN model. Different expert networks can learn to deal with different regions in the representation space, and they can utilize similar patterns between the old kernels and new kernels. In the low-level MoE, we apply MoE on three natural granularities of a program: node, basic block, and graph. The high-level MoE learns to aggregate the three granularities for the final decision. To stably train the hierarchical MoE, we further propose a two-stage training method. Extensive experiments verify the effectiveness of the hierarchical MoE.more » « less
-
High-level synthesis (HLS) has enabled the rapid development of custom hardware circuits for many software applications. However, developing high-performance hardware circuits using HLS is still a non-trivial task requiring expertise in hardware design. Further, the hardware design space, especially for multi-kernel applications, grows exponentially. Therefore, several HLS automation and abstraction frameworks have been proposed recently, but many issues remain unresolved. These issues include: 1) relying mainly on hardware directives (pragmas) to apply hardware optimizations without exploring loop scheduling opportunities. 2) targeting single-kernel applications only. 3) lacking automatic and/or global design space exploration. 4) missing critical hardware optimizations, such as graph-level pipelining for multi-kernel applications. To address these challenges, we propose a novel methodology and framework on top of the popular multi-level intermediate representation (MLIR) infrastructure called Stream-HLS. Our framework takes a C/C++ or PyTorch software code and automatically generates an optimized dataflow architecture along with host code for field-programmable gate arrays (FPGAs). To achieve this, we developed an accurate analytical performance model for global scheduling and optimization of dataflow architectures. Stream-HLS is evaluated using various standard HLS benchmarks and real-world benchmarks from transformer models, convolution neural networks, and multilayer perceptrons. Stream-HLS designs outperform the designs of prior state-of-the-art automation frameworks and manually-optimized designs of abstraction frameworks by up to 79.43× and 10.62× geometric means respectively. Finally, the Stream-HLS framework is modularized, extensible, and open-sourced at https://github.com/UCLA-VAST/Stream-HLS( https://doi.org/10.5281/zenodo.14585909 ).more » « less
-
In recent years, domain-specific accelerators (DSAs) have gained popularity for applications such as deep learning and autonomous driving. To facilitate DSA designs, programmers use high-level synthesis (HLS) to compile a high-level description written in C/C++ into a design with low-level hardware description languages that eventually synthesize DSAs on circuits. However, creating a highquality HLS design still demands significant domain knowledge, particularly in microarchitecture decisions expressed as pragmas. Thus, it is desirable to automate such decisions with the help of machine learning for predicting the quality of HLS designs, requiring a deeper understanding of the program that consists of original code and pragmas. Naturally, these programs can be considered as sequence data. In addition, these programs can be compiled and converted into a control data flow graph (CDFG). But existing works either fail to leverage both modalities or combine the two in shallow or coarse ways. We propose ProgSG, a model that allows interaction between the source code sequence modality and the graph modality in a deep and fine-grained way. To alleviate the scarcity of labeled designs, a pre-training method is proposed based on a suite of compiler’s data flow analysis tasks. Experimental results show that ProgSG reduces the RMSE of design performance predictions by up to 22%, and identifies designs with an average of 1.10× and 1.26× (up to 8.17× and 13.31×) performance improvement in design space exploration (DSE) task compared to HARP and AutoDSE, respectively.more » « less
An official website of the United States government

