skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leaf spectroscopy of resistance to Ceratocystis wilt of ‘Ōhi’a
Plant pathogens are increasingly compromising forest health, with impacts to the ecological, economic, and cultural goods and services these global forests provide. One response to these threats is the identification of disease resistance in host trees, which with conventional methods can take years or even decades to achieve. Remote sensing methods have accelerated host resistance identification in agricultural crops and for a select few forest tree species, but applications are rare. Ceratocystis wilt of ʻōhiʻa, caused by the fungal pathogenCeratocystis lukuohiahas been killing large numbers of the native Hawaiian tree,Metrosideros polymorphaor ʻŌhiʻa, Hawaii’s most common native tree and a biocultural keystone species. Here, we assessed whether resistance toC.lukuohiais detectable in leaf-level reflectance spectra (400–2500 nm) and used chemometric conversion equations to understand changes in leaf chemical traits of the plants as indicators of wilt symptom progression. We collected leaf reflectance data prior to artificially inoculating 2–3-year-oldM.polymorphaclones with C.lukuohia. Plants were rated 3x a week for foliar wilt symptom development and leaf spectra data collected at 2 to 4-day intervals for 120 days following inoculation. We applied principal component analysis (PCA) to the pre-inoculation spectra, with plants grouped according to site of origin and subtaxon, and two-way analysis of variance to assess whether each principal component separated individuals based on their disease severity ratings. We identified seven leaf traits that changed in susceptible plants following inoculation (tannins, chlorophyll a+b, NSC, total C, leaf water, phenols, and cellulose) and leaf chemistries that differed between resistant and early-stage susceptible plants, most notably chlorophyll a+b and cellulose. Further, disease resistance was found to be detectable in the reflectance data, indicating that remote sensing work could expedite Ceratocystis wilt of ʻōhiʻa resistance screenings.  more » « less
Award ID(s):
2218932
PAR ID:
10539465
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Sarrocco, Sabrina
Publisher / Repository:
Plos One
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
6
ISSN:
1932-6203
Page Range / eLocation ID:
e0287144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The role of intraspecific trait variation in functional ecology has gained traction in recent years as many papers have observed its importance in driving community diversity and ecology. Yet much of the work in this field relies on field-based trait surveys. Here, we used continuous canopy trait information derived from remote sensing data of a highly polymorphic tree species, Metrosideros polymorpha, to quantify environmental controls on intraspecific trait variation. M. polymorpha, an endemic, keystone tree species in Hawai’i, varies morphologically, chemically, and genetically across broad elevation and soil substrate age gradients, making it an ideal model organism to explore large-scale environmental drivers of intraspecific trait variation. M. polymorpha canopy reflectance (visible to shortwave infrared; 380–2510 nm) and light detection and ranging (LiDAR) data collected by the Global Airborne Observatory were modeled to canopy trait estimates of leaf mass per area, chlorophyll a and b, carotenoids, total carbon, nitrogen, phosphorus, phenols, cellulose, and top of canopy height using previously developed leaf chemometric equations. We explored how these derived traits varied across environmental gradients by extracting elevation, slope, aspect, precipitation, and soil substrate age data at canopy locations. We then obtained the feature importance values of the environmental factors in predicting each leaf trait by training random forest models to predict leaf traits individually. Of these environmental factors, elevation was the most important predictor for all canopy traits. Elevation not only affected canopy traits directly but also indirectly by influencing the relationships between soil substrate age and canopy traits as well as between nitrogen and other traits, as indicated by the change in slope between the variables at different elevation ranges. In conclusion, intraspecific variation in M. polymorpha traits derived from remote sensing adheres to known leaf economic spectrum (LES) patterns as well as interspecific LES traits previously mapped using imaging spectroscopy. 
    more » « less
  2. Tree mortality due to global change—including range expansion of invasive pests and pathogens—is a paramount threat to forest ecosystems. Oak forests are among the most prevalent and valuable ecosystems both ecologically and economically in the United States. There is increasing interest in monitoring oak decline and death due to both drought and the oak wilt pathogen (Bretziella fagacearum). We combined anatomical and ecophysiological measurements with spectroscopy at leaf, canopy, and airborne levels to enable differentiation of oak wilt and drought, and detection prior to visible symptom appearance. We performed an outdoor potted experiment withQuercus rubrasaplings subjected to drought stress and/or artificially inoculated with the pathogen. Models developed from spectral reflectance accurately predicted ecophysiological indicators of oak wilt and drought decline in both potted and field experiments with naturally grown saplings. Both oak wilt and drought resulted in blocked water transport through xylem conduits. However, oak wilt impaired conduits in localized regions of the xylem due to formation of tyloses instead of emboli. The localized tylose formation resulted in more variable canopy photosynthesis and water content in diseased trees than drought-stressed ones. Reflectance signatures of plant photosynthesis, water content, and cellular damage detected oak wilt and drought 12 d before visual symptoms appeared. Our results show that leaf spectral reflectance models predict ecophysiological processes relevant to detection and differentiation of disease and drought. Coupling spectral models that detect physiological change with spatial information enhances capacity to differentiate plant stress types such as oak wilt and drought. 
    more » « less
  3. Abstract Lianas, woody vines acting as structural parasites of trees, have profound effects on the composition and structure of tropical forests, impacting tree growth, mortality, and forest succession. Remote sensing could offer a powerful tool for quantifying the scale of liana infestation, provided the availability of robust detection methods. We analyze the consistency and global geographic specificity of spectral signals—reflectance across wavelengths—from liana‐infested tree crowns and forest stands, examining the underlying mechanisms of these signals. We compiled a uniquely comprehensive database, including leaf reflectance spectra from 5424 leaves, fine‐scale airborne reflectance data from 999 liana‐infested canopies, and coarse‐scale satellite reflectance data covering 775 ha of liana‐infested forest stands. To unravel the mechanisms of the liana spectral signal, we applied mechanistic radiative transfer models across scales, establishing a synthesis of the relative importance of different mechanisms, which we corroborate with field data on liana leaf chemistry and canopy structure. We find a consistent liana spectral signal at canopy and stand scales across globally distributed sites. This signature mainly arises at the canopy level due to direct effects of more horizontal leaf angles, resulting in a larger projected leaf area, and indirect effects from increased light scattering in the near and short‐wave infrared regions, linked to lianas' less costly leaf construction compared with trees on average. The existence of a consistent global spectral signal for lianas suggests that large‐scale quantification of liana infestation is feasible. However, because the traits responsible for the liana canopy‐reflectance signal are not exclusive to lianas, accurate large‐scale detection requires rigorously validated remote sensing methods. Our models highlight challenges in automated detection, such as potential misidentification due to leaf phenology, tree life history, topography, and climate, especially where the scale of liana infestation is less than a single remote sensing pixel. The observed cross‐site patterns also prompt ecological questions about lianas' adaptive similarities in optical traits across environments, indicating possible convergent evolution due to shared constraints on leaf biochemical and structural traits. 
    more » « less
  4. Abstract Imaging spectroscopy has the potential to map closely related plant taxa at landscape scales. Although spectral investigations at the leaf and canopy levels have revealed relationships between phylogeny and reflectance, understanding how spectra differ across, and are inherited from, genotypes of a single species has received less attention. We used a common-garden population of four varieties of the keystone canopy tree,Metrosideros polymorpha, from Hawaii Island and four F1-hybrid genotypes derived from controlled crosses to determine if reflectance spectra discriminate sympatric, conspecific varieties of this species and their hybrids. With a single exception, pairwise comparisons of leaf reflectance patterns successfully distinguished varieties ofM. polymorphaon Hawaii Island as well as populations of the same variety from different islands. Further, spectral variability within a single variety from Hawaii Island and the older island of Oahu was greater than that observed among the four varieties on Hawaii Island. F1 hybrids most frequently displayed leaf spectral patterns intermediate to those of their parent taxa. Spectral reflectance patterns distinguished each of two of the hybrid genotypes from one of their parent varieties, indicating that classifying hybrids may be possible, particularly if sample sizes are increased. This work quantifies a baseline in spectral variability for an endemic Hawaiian tree species and advances the use of imaging spectroscopy in biodiversity studies at the genetic level. 
    more » « less
  5. Abstract Goss's wilt, caused by the Gram-positive actinobacterium Clavibacter nebraskensis, is an important bacterial disease of maize. The molecular and genetic mechanisms of resistance to the bacterium, or, in general, Gram-positive bacteria causing plant diseases, remain poorly understood. Here, we examined the genetic basis of Goss's wilt through differential gene expression, standard genome-wide association mapping (GWAS), extreme phenotype (XP) GWAS using highly resistant (R) and highly susceptible (S) lines, and quantitative trait locus (QTL) mapping using 3 bi-parental populations, identifying 11 disease association loci. Three loci were validated using near-isogenic lines or recombinant inbred lines. Our analysis indicates that Goss's wilt resistance is highly complex and major resistance genes are not commonly present. RNA sequencing of samples separately pooled from R and S lines with or without bacterial inoculation was performed, enabling identification of common and differential gene responses in R and S lines. Based on expression, in both R and S lines, the photosynthesis pathway was silenced upon infection, while stress-responsive pathways and phytohormone pathways, namely, abscisic acid, auxin, ethylene, jasmonate, and gibberellin, were markedly activated. In addition, 65 genes showed differential responses (up- or down-regulated) to infection in R and S lines. Combining genetic mapping and transcriptional data, individual candidate genes conferring Goss's wilt resistance were identified. Collectively, aspects of the genetic architecture of Goss's wilt resistance were revealed, providing foundational data for mechanistic studies. 
    more » « less