skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on September 3, 2025

Title: Full transmission of vectorial waves through 3D multiple-scattering media

A striking prediction from the random matrix theory (RMT) in mesoscopic physics is the existence of “open channels”: waves that use multipath interference to achieve perfect transmission across an opaque disordered medium even in the multiple-scattering regime. Realization of such open channels requires a coherent control of the complete incident wavefront and has only been achieved for scalar waves in two dimensions (2D) so far. Here, we utilize a recently proposed “augmented partial factorization” full-wave simulation method to compute the polarization-resolved scattering matrix from 3D vectorial Maxwell’s equations and demonstrate the existence of open channels in 3D disordered media. We examine the spatial profile of such open channels, demonstrate the existence of a bimodal transmission eigenvalue distribution, and study the effects of incomplete polarization control and finite-area illumination. The simulations provide full access to all spatiotemporal properties of the complex wave transport in 3D disordered systems, filling the gap left by experimental capabilities.

 
more » « less
NSF-PAR ID:
10539508
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
49
Issue:
18
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 5035
Size(s):
Article No. 5035
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The diffusion model is used to calculate both the time-averaged flow of particles in stochastic media and the propagation of waves averaged over ensembles of disordered static configurations. For classical waves exciting static disordered samples, such as a layer of paint or a tissue sample, the flux transmitted through the sample may be dramatically enhanced or suppressed relative to predictions of diffusion theory when the sample is excited by a waveform corresponding to a transmission eigenchannel. Even so, it is widely assumed that the velocity of waves is irretrievably randomized in scattering media. Here we demonstrate in microwave measurements and numerical simulations that the statistics of velocity of different transmission eigenchannels are distinct and remains so on all length scales and are identical on the incident and output surfaces. The interplay between eigenchannel velocities and transmission eigenvalues determines the energy density within the medium, the diffusion coefficient, and the dynamics of propagation. The diffusion coefficient and all scattering parameters, including the scattering mean free path, oscillate with the width of the sample as the number and shape of the propagating channels in the medium change.

     
    more » « less
  2. Dynamic and steady-state aspects of wave propagation are deeply connected in lossless open systems ‎in which the scattering matrix is unitary. There is then an equivalence among the energy excited within ‎the medium through all channels, the Wigner time delay, which is the sum of dwell times in all ‎channels coupled to the medium, and the density of states. But these equivalences fall away in the ‎presence of material loss or gain. In this paper, we use microwave measurements, numerical ‎simulations, and theoretical analysis to discover the changing relationships among fundamental wave ‎properties with loss and gain, and their dependence upon dimensionality and spectral overlap. We ‎begin with the demonstrations that the transmission time in random 1D media is equal to the density ‎of states even in the presence of ultrastrong absorption and that its ensemble average is independent ‎of the strengths of scattering and absorption. In contrast, the Wigner time becomes imaginary in the ‎presence of loss, with real and imaginary parts that fall with absorption. In multichannel media, the ‎transmission time remains equal to the density of states and is independent of the scattering strength ‎in unitary systems but falls with absorption to a degree that increases with the strengths of absorption ‎and scattering, and the number of channels coupled to the medium. We show that the relationships ‎between key propagation variables in non-Hermitian systems can be understood in terms of the ‎singularities of the phase of the determinant of the transmission matrix. The poles of the transmission ‎matrix are the same as those of the scattering matrix, but the transmission zeros are fundamentally ‎different. Whereas the zeros of the scattering matrix are the complex conjugates of the poles, the ‎transmission zeros are topological: in unitary systems they occur only singly on the real axis or as ‎conjugate pairs. We follow the evolution and statistics of zeros in the complex plane as random ‎samples are deformed. The sensitivity of the spacing of zeros in the complex plane with deformation ‎of the sample has a square-root singularity at a zero point at which two single zeros and a complex ‎pair interconvert. The transmission time is a sum of Lorentzian functions associated with poles and ‎zeros. The sum over poles is the density of states with an average that is independent of scattering ‎and dissipation. But the sum over zeros changes with loss, gain, scattering strength and the number of ‎channels in ways that make it possible to control ultranarrow spectral features in transmission and ‎transmission time. We show that the field, including the contribution of the still coherent incident ‎wave, is a sum over modal partial fractions with amplitudes that are independent of loss and gain. The ‎energy excited may be expressed in terms of the resonances of the medium and is equal to the dwell ‎time even in the presence of loss or gain.‎ 
    more » « less
  3. Using the Schur complement scattering analysis (SCSA) method, we accelerate the scattering matrix computation for large-scale disordered media by many orders of magnitude and realize full-wave simulations of classical and quantum coherent backscattering. 
    more » « less
  4. Understanding vanishing transmission in Fano resonances in quantum systems and metamaterials and perfect and ultralow transmission in disordered media has advanced the knowledge and applications of wave interactions. Here, we use analytic theory and numerical simulations to understand and control the transmission and transmission time in complex systems by deforming a medium and adjusting the level of gain or loss. Unlike the zeros of the scattering matrix, the position and motion of the zeros of the determinant of the transmission matrix (TM) in the complex plane of frequency and field decay rate have robust topological properties. In systems without loss or gain, the transmission zeros appear either singly on the real axis or as conjugate pairs in the complex plane. As the structure is modified, two single zeros and a complex conjugate pair of zeros may interconvert when they meet at a square root singularity in the rate of change of the distance between the transmission zeros in the complex plane with sample deformation. The transmission time is the spectral derivative of the argument of the determinant of the TM. It is a sum over Lorentzian functions associated with the resonances of the medium, which is the density of states, and with the zeros of the TM. Transmission vanishes, and the transmission time diverges as zeros are brought near the real axis. Monitoring the transmission and transmission time when two zeros are close may open new possibilities for ultrasensitive detection. 
    more » « less
  5. A substantial challenge in guiding elastic waves is the presence of reflection and scattering at sharp edges, defects, and disorder. Recently, mechanical topological insulators have sought to overcome this challenge by supporting back-scattering resistant wave transmission. In this paper, we propose and experimentally demonstrate a reconfigurable electroacoustic topological insulator exhibiting an analog to the quantum valley Hall effect (QVHE). Using programmable switches, this phononic structure allows for rapid reconfiguration of domain walls and thus the ability to control back-scattering resistant wave propagation along dynamic interfaces for phonons lying in static and finite-frequency regimes. Accordingly, a graphene-like polyactic acid (PLA) layer serves as the host medium, equipped with periodically arranged and bonded piezoelectric (PZT) patches, resulting in two Dirac cones at theKpoints. The PZT patches are then connected to negative capacitance external circuits to break inversion symmetry and create nontrivial topologically protected bandgaps. As such, topologically protected interface waves are demonstrated numerically and validated experimentally for different predefined trajectories over a broad frequency range.

     
    more » « less