Polymeric membranes have become essential for energy-efficient gas separations such as natural gas sweetening, hydrogen separation, and carbon dioxide capture. Polymeric membranes face challenges like permeability-selectivity tradeoffs, plasticization, and physical aging, limiting their broader applicability. Machine learning (ML) techniques are increasingly used to address these challenges. This review covers current ML applications in polymeric gas separation membrane design, focusing on three key components: polymer data, representation methods, and ML algorithms. Exploring diverse polymer datasets related to gas separation, encompassing experimental, computational, and synthetic data, forms the foundation of ML applications. Various polymer representation methods are discussed, ranging from traditional descriptors and fingerprints to deep learning-based embeddings. Furthermore, we examine diverse ML algorithms applied to gas separation polymers. It provides insights into fundamental concepts such as supervised and unsupervised learning, emphasizing their applications in the context of polymer membranes. The review also extends to advanced ML techniques, including data-centric and model-centric methods, aimed at addressing challenges unique to polymer membranes, focusing on accurate screening and inverse design. 
                        more » 
                        « less   
                    
                            
                            A review on machine learning-guided design of energy materials
                        
                    
    
            Abstract The development and design of energy materials are essential for improving the efficiency, sustainability, and durability of energy systems to address climate change issues. However, optimizing and developing energy materials can be challenging due to large and complex search spaces. With the advancements in computational power and algorithms over the past decade, machine learning (ML) techniques are being widely applied in various industrial and research areas for different purposes. The energy material community has increasingly leveraged ML to accelerate property predictions and design processes. This article aims to provide a comprehensive review of research in different energy material fields that employ ML techniques. It begins with foundational concepts and a broad overview of ML applications in energy material research, followed by examples of successful ML applications in energy material design. We also discuss the current challenges of ML in energy material design and our perspectives. Our viewpoint is that ML will be an integral component of energy materials research, but data scarcity, lack of tailored ML algorithms, and challenges in experimentally realizing ML-predicted candidates are major barriers that still need to be overcome. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2332270
- PAR ID:
- 10539559
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Progress in Energy
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2516-1083
- Format(s):
- Medium: X Size: Article No. 042005
- Size(s):
- Article No. 042005
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for organic molecules and polymers are mainly experimentally-driven, guided by experience, intuition, and conceptual insights. Though they have been successfully applied to discover many important materials, these methods are facing significant challenges due to the tremendous demand of new materials and vast design space of organic molecules and polymers. Accelerated and inverse materials design is an ideal solution to these challenges. With advancements in high-throughput computation, artificial intelligence (especially machining learning, ML), and the growth of materials databases, ML-assisted materials design is emerging as a promising tool to flourish breakthroughs in many areas of materials science and engineering. To date, using ML-assisted approaches, the quantitative structure property/activity relation for material property prediction can be established more accurately and efficiently. In addition, materials design can be revolutionized and accelerated much faster than ever, through ML-enabled molecular generation and inverse molecular design. In this perspective, we review the recent progresses in ML-guided design of organic molecules and polymers, highlight several successful examples, and examine future opportunities in biomedical, chemical, and materials science fields. We further discuss the relevant challenges to solve in order to fully realize the potential of ML-assisted materials design for organic molecules and polymers. In particular, this study summarizes publicly available materials databases, feature representations for organic molecules, open-source tools for feature generation, methods for molecular generation, and ML models for prediction of material properties, which serve as a tutorial for researchers who have little experience with ML before and want to apply ML for various applications. Last but not least, it draws insights into the current limitations of ML-guided design of organic molecules and polymers. We anticipate that ML-assisted materials design for organic molecules and polymers will be the driving force in the near future, to meet the tremendous demand of new materials with tailored properties in different fields.more » « less
- 
            Abstract The application of machine learning (ML) techniques in materials science has revolutionized the pace and scope of materials research and design. In the case of metal–organic frameworks (MOFs), a promising class of materials due to their tunable properties and versatile applications in gas adsorption and separation, ML has helped survey the vast material space. This study explores the integration of reinforcement learning (RL), specifically Q‐learning, within an active learning (AL) context, combined with Gaussian processes (GPs) for predictive modeling of adsorption in MOFs. We demonstrate the effectiveness of the RL‐driven framework in guiding the selection of training data points and optimizing predictive model performance for methane and carbon dioxide adsorption, using two different reward metrics. Our results highlight the integration of RL as an AL method for adsorption predictions in MFs, and how it compares to a previously implemented AL scheme.more » « less
- 
            Abstract Electrohydrodynamic (EHD) printing has been used in various applications (e.g., sensors, batteries, photonic crystals). Currently, research on studying the relationships between EHD jetting behaviors, material properties, and processing conditions is still challenging due to a large number of parameters, cost, time, and the complex nature of experiments. In this research, we investigated EHD printing behavior using a machine learning (ML)-guided approach to overcome limitations in the experiments. Specifically, we investigated two jetting modes and the size of printed material with a broader range of material properties and processing parameters. We used samples from both literature and our own experiment results with different type of materials. Different ML models have been developed and applied to the data. Our results have shown that ML can navigate a vast parameter search space to predict printing behavior with an accuracy of higher than 95% during EHD printing. Moreover, the results showed that ML models can be used to predict the printing behavior and feather size for new materials. The ML models can guide the investigation of EHD printing and helped us understand the printing behavior in a systematic manner with reduced time, cost, and required experiments.more » « less
- 
            In this community review report, we discuss applications and techniques for fast machine learning (ML) in science—the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
