skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 15, 2025

Title: Extreme ductile thinning of Cambrian marbles in the footwall of the Northern Snake Range metamorphic core complex, Nevada: implications for extension magnitude and structural evolution
Documenting the geometry, magnitude and kinematics of ductile deformation provides important insights into the structural and rheological evolution of continental lithosphere. The Northern Snake Range metamorphic core complex in eastern Nevada provides an exceptional opportunity to investigate the geometry and magnitude of ductile strain during high-magnitude continental extension. Decades of mapping-based research has provided exceptional stratigraphic context for the footwall of the low-angle, top-down-to-ESE, normal-sense Northern Snake Range dècollement (NSRD). In the northern part of the range, Middle-Late Cambrian marble units in the NSRD footwall, which have a cumulative stratigraphic thickness of 1107 ± 107 m in adjacent ranges, were ductilely thinned during Late Eocene-Late Oligocene extension. From west to east across the range, these rocks have been thinned from 869-935-m-thick (15-21% structural thinning) to 54-88 m-thick (92-95% structural thinning) across a 12 km lineation-parallel distance. Ductile extensional strain was accompanied by the development of pervasive linear-planar fabrics and produced megaboudins of calcareous schist units that are ~100-500-m-long, ~15-25-m-thick, and separated by as much as ~1000 m. The magnitude of subhorizontal, ESE-directed, lineation-parallel ductile extension increases eastward across the range from 24 ± 21% to 1226 ± 256%, and total ductile extension across the range is 12.1 ± 2.2 km (167 ± 31%). Quartz recrystallization microstructures and published calcite-dolomite thermometry indicate deformation temperatures of ~400-550 °C during initial Late Eocene-Late Oligocene ductile extensional shearing. NSRD footwall rocks in the eastern part of the range experienced a longer ductile extensional strain history and a prolonged residence time at higher temperatures compared to the western part of the range. This was facilitated by the progressive eastward migration of denudation-related cooling and was likely enhanced by shear heating that scaled eastward with strain magnitude, and/or a possible eastward increase in burial depth. These factors promoted the development of the extreme ductile strain gradient in the NSRD footwall across the Northern Snake Range.  more » « less
Award ID(s):
2022979
PAR ID:
10539796
Author(s) / Creator(s):
; ;
Corporate Creator(s):
Editor(s):
NA
Publisher / Repository:
Geological Society of America
Date Published:
Format(s):
Medium: X
Location:
Spokane, WA
Sponsoring Org:
National Science Foundation
More Like this
  1. The geometry and magnitude of finite strain in the ductile footwalls of metamorphic core complexes are important parameters for testing the predictions of models of extension, yet are often difficult to quantify due to the rare preservation of deformed markers. The footwall of the Northern Snake Range core complex in eastern Nevada preserves a coherent stratigraphy of ductilely thinned Neoproterozoic-Cambrian metasedimentary rocks that are exposed over a 30 km transport-parallel distance, and thus provides an important opportunity to quantify footwall strain. We measured strain ellipsoids from stretched detrital quartz grains and ribbons in 45 samples that span the full exposed distance of the ductilely sheared footwall of the master detachment fault (the Northern Snake Range décollement), and we combined our data with 11 published strain ellipsoids. On the eastern side of the range, where recrystallization limits the preservation of detrital quartz grains, we estimated finite strain by comparing the attenuated thicknesses of Neoproterozoic-Cambrian rock units to their regional stratigraphic thicknesses. Our data demonstrate a dramatic gradient in ductile strain in the transport direction, from 39% subhorizontal extension and 32% subvertical thinning at the western flank of the Northern Snake Range to 450-1440% extension and 81-94% thinning at the eastern flank. The footwall underwent 18-20 km of cumulative ductile extension, which is equivalent to 38-43% of the 47 km of total extension accommodated on brittle structures. Kinematic vorticity estimates from published quartz petrofabrics define an eastward-increasing component of top-to-the-ESE simple shear. Our data are compatible with a rolling hinge model of extension, where displacement on a low-angle, upper-crustal, brittle detachment fault system was fed downward to a zone of distributed, simple shear-dominant, top-down-to-ESE ductile shearing beneath the quartz crystal-plastic transition. The progressive eastward translation and brittle thinning of the hanging wall resulted in the eastward migration of exhumation of footwall rocks. Migrating exhumation may in part be responsible for the eastward-increasing finite strain gradient, as footwall rocks in the eastern part of the range experienced a longer strain history. 
    more » « less
  2. Documenting the kinematics of detachment faults can provide fundamental insights into the ways in which the lithosphere evolves during high-magnitude extension. Although it has been investigated for 70 yr, the displacement magnitude on the Northern Snake Range décollement in eastern Nevada remains vigorously debated, with published estimates ranging between <10 and 60 km. To provide constraints on displacement on the Northern Snake Range décollement, we present retrodeformed cross sections across the west-adjacent Schell Creek and Duck Creek Ranges, which expose a system of low-angle faults that have previously been mapped as thrust faults. We reinterpret this fault system as the extensional Schell Creek Range detachment system, which is a stacked series of top-down-to-the-ESE brittle normal faults with 5°–10° stratigraphic cutoff angles that carry 0.1–0.5-km-thick sheets that are up to 8–13 km long. The western portion of the Schell Creek Range detachment system accomplished ~5 km of structural attenuation and is folded across an antiformal culmination that progressively grew during extension. Restoration using an Eocene unconformity as a paleohorizontal marker indicates that faults of the Schell Creek Range detachment system were active at ~5°–10°E dips. The Schell Creek Range detachment system accommodated 36 km of displacement via repeated excision, which is bracketed between ca. 36.5 and 26.1 Ma by published geochronology. Based on their spatial proximity, compatible displacement sense, overlapping deformation timing, and the similar stratigraphic levels to which these faults root, we propose that the Schell Creek Range detachment system represents the western breakaway system for the Northern Snake Range décollement. Debates over the pre-extensional geometry of the Northern Snake Range décollement hinder an accurate cumulative extension estimate, but our reconstruction shows that the Schell Creek Range detachment system fed at least 36 km of displacement eastward into the Northern Snake Range décollement. 
    more » « less
  3. Abstract Strongly deformed footwall rocks exposed in metamorphic core complexes (MCC) of the North American Cordillera were exhumed via ductile attenuation, mylonitic shearing, and detachment faulting. Whether these structures accommodated diapiric upwelling or regional extension via low‐angle normal faulting is debated. The Ruby Mountains‐East Humboldt Range MCC, northeast Nevada, records top‐west normal‐sense exhumation of deformed Proterozoic‐Paleozoic stratigraphy and older basement. We conducted 1:24,000‐scale mapping of the southwestern East Humboldt Range, with integrated structural, geochemical, and geochronological analyses to characterize the geometry and kinematics of extension and exhumation of the mylonitized footwall. Bedrock stratigraphy is pervasively intruded by Cretaceous, Eocene, and Oligocene intrusions, but observations of a coherent stratigraphic section show >80% vertical attenuation of Neoproterozoic to Ordovician rocks. These rocks are penetratively sheared with top‐west kinematics. The shear zone thus experienced combined pure‐ and simple‐shear (i.e., general shear) strain. We argue that this shear zone was syn‐/post‐kinematic with respect to Oligocene plutonism because: (a) mylonitic shearing spatially corresponds with preceding Oligocene intrusions; (b) thermochronology reveals that the shear zone experienced substantial cooling and exhumation after Oligocene plutonism; and (c) the mylonites are crosscut by undated, but likely late Oligocene, leucogranite. We propose that Eocene mantle‐derived magmatism and thermal incubation led to Oligocene diapiric upwelling of the middle crust, with ductile stretching focused on the flanks of this upwarp. Regional Basin and Range extension initiated later in the middle Miocene. Therefore, the development of the East Humboldt Range shear zone was not driven by regional extension and coupled detachment faulting. 
    more » « less
  4. Abstract Documenting the magnitude of finite strain within ductile shear zones is critical for understanding lithospheric deformation. However, pervasive recrystallization within shear zones often destroys the deformed markers from which strain can be measured. Intensity parameters calculated from quartz crystallographic preferred orientation (CPO) distributions have been interpreted as proxies for the relative strain magnitude within shear zones, but thus far have not been calibrated to absolute strain magnitude. Here, we present equations that quantify the relationship between CPO intensity parameters (cylindricity and density norm) and finite strain magnitude, which we calculate by integrating quartz CPO analyses (n = 87) with strain ellipsoids from stretched detrital quartz clasts (n = 49) and macro‐scale ductile thinning measurements (n = 7) from the footwall of the Northern Snake Range décollement (NSRD) in Nevada. The NSRD footwall exhibits a strain gradient, with Rs(XZ)values increasing from 5.4 ± 1.4 to 282 ± 122 eastward across the range. Cylindricity increases from 0.52 to 0.83 as Rs increases from 5.4 to 23.5, and increases gradually to 0.92 at Rs values between 160 and 404. Density norm increases from 1.68 to 2.97 as Rs increases from 5.4 to 23.5, but stays approximately constant until Rs values between 160 and 404. We present equations that express average finite strain as a function of average cylindricity and density norm, which provide a broadly applicable tool for estimating the first‐order finite strain magnitude within any shear zone from which quartz CPO intensity can be measured. To demonstrate their utility, we apply our equations to published data from Himalayan shear zones and a Cordilleran core complex. 
    more » « less
  5. null (Ed.)
    The Ruby Mountains, East Humboldt Range and Wood Hills (REHW) of Elko County Nevada, one of the classic metamorphic core complexes of the Cordillera, preserves a protracted and episodic record of both ancient and modern crustal extension that has only recently been unraveled based on its thermochronometrically constrained cooling history. Extension began during the Late Eocene synchronously with a major pulse of intermediate to felsic magmatism preserved locally by plutonic rocks intruded into the REHW and regionally by widespread Late Eocene to early Oligocene volcanism (“the ignimbrite flare-up”). The Eocene-Oligocene event accommodated at least 15 km of extension concentrated in the northern half of the complex and associated with deposition in the Elko Basin to the west, a relatively thin (~1 km), broad sequence of Late Eocene lacustrine and related strata that contrasts with the younger sedimentation patterns represented by the narrower, thicker (up to 4+km), coarse clastics of the Miocene Humboldt Basin. Though locally significant, the Eocene-Oligocene extensional phase appears not to have been associated with broadly distributed regional extension, again contrasting with Miocene and younger events. The initial phase of extension slowed or halted by the mid-Oligocene, after which extension re-accelerated in the latest Oligocene to early Miocene (~25 – 21 Ma), correlative with deposition of a coarse clastic and lacustrine sequence known as the Clover Formation. This extensional phase propagated farther south than the earlier phase along the full length of the REHW. Extension likely slowed again between ~21 Ma and ~17.5 Ma, after which it abruptly re-accelerated through the Middle Miocene to ~10 Ma, synchronous with deposition of the thick, coarse clastics of the Humboldt Formation. Middle Miocene extension likely initiated with crustal-scale heating marking the impingement of the Yellowstone hot spot in NW Nevada. Sometime after 10 Ma, the interior of the core complex was transected by east-dipping normal faults that today define the steep eastern face of the Ruby Mountains and East Humboldt Range; these face west-dipping normal faults along the west flank of the Pequop Mountains and Spruce Mountains. Extension continues today at a rate of ~1 mm/yr as represented by the 2008 MW 6.0 Wells Earthquake. 
    more » « less