skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intra-chloroplast proteases: A holistic network view of chloroplast proteolysis
Abstract Different proteases and peptidases are present within chloroplasts and nonphotosynthetic plastids to process precursor proteins and to degrade cleaved chloroplast transit peptides and damaged, misfolded, or otherwise unwanted proteins. Collectively, these proteases and peptidases form a proteolysis network, with complementary activities and hierarchies, and build-in redundancies. Furthermore, this network is distributed across the different intra-chloroplast compartments (lumen, thylakoid, stroma, envelope). The challenge is to determine the contributions of each peptidase (system) to this network in chloroplasts and nonphotosynthetic plastids. This will require an understanding of substrate recognition mechanisms, degrons, substrate, and product size limitations, as well as the capacity and degradation kinetics of each protease. Multiple extra-plastidial degradation pathways complement these intra-chloroplast proteases. This review summarizes our current understanding of these intra-chloroplast proteases in Arabidopsis and crop plants with an emphasis on considerations for building a qualitative and quantitative network view.  more » « less
Award ID(s):
2322813
PAR ID:
10539849
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The Plant Cell
Volume:
36
Issue:
9
ISSN:
1040-4651
Format(s):
Medium: X Size: p. 3116-3130
Size(s):
p. 3116-3130
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary A network of peptidases governs proteostasis in plant chloroplasts and mitochondria. This study reveals strong genetic and functional interactions in Arabidopsis between the chloroplast stromal CLP chaperone‐protease system and the PREP1,2 peptidases, which are dually localized to chloroplast stroma and the mitochondrial matrix.Higher order mutants defective in CLP or PREP proteins were generated and analyzed by quantitative proteomics and N‐terminal proteomics (terminal amine isotopic labeling of substrates (TAILS)).Strong synergistic interactions were observed between the CLP protease system (clpr1‐2,clpr2‐1,clpc1‐1,clpt1,clpt2)and both PREP homologs (prep1,prep2) resulting in embryo lethality or growth and developmental phenotypes. Synergistic interactions were observed even when only one of the PREP proteins was lacking, suggesting that PREP1 and PREP2 have divergent substrates. Proteome phenotypes were driven by the loss of CLP protease capacity, with little impact from the PREP peptidases. Chloroplast N‐terminal proteomesshowed that many nuclear encoded chloroplast proteins have alternatively processed N‐termini inprep1prep2,clpt1clpt2andprep1prep2clpt1clpt2.Loss of chloroplast protease capacity interferes with stromal processing peptidase (SPP) activity due to folding stress and low levels of accumulated cleaved cTP fragments. PREP1,2 proteolysis of cleaved cTPs is complemented by unknown proteases. A model for CLP and PREP activity within a hierarchical chloroplast proteolysis network is proposed. 
    more » « less
  2. Chloroplasts are ancient organelles responsible for photosynthesis and various biosynthetic functions essential to most life on Earth. Many of these functions require tightly controlled regulatory processes to maintain homeostasis at the protein level. One such regulatory mechanism is the ubiquitin-proteasome system whose fundamental role is increasingly emerging in chloroplasts. In particular, the role of E3 ubiquitin ligases as determinants in the ubiquitination and degradation of specific intra-chloroplast proteins. Here, we highlight recent advances in understanding the roles of plant E3 ubiquitin ligases SP1, COP1, PUB4, CHIP, and TT3.1 as well as the ubiquitin-dependent segregase CDC48 in chloroplast function. 
    more » « less
  3. Chloroplast biogenesis, essential for photosynthesis, depends on the import of nuclear-encoded proteins through the translocon at the outer envelope of chloroplasts (TOC) complexes. Despite its importance, the mechanisms regulating this process remain largely elusive. We identify serine-260 (S260) as a critical phosphorylation site in Toc33, a core TOC component. This phosphorylation stabilizes Toc33 by preventing its ubiquitination and degradation. Constitutive triple response 1 (CTR1), a negative regulator of ethylene signaling, and its paralog RAF-like kinase are involved in phosphorylating Toc33. Disruption of Toc33 phosphorylation impairs its stability and photosynthetic protein import, consequently affecting chloroplast structural integrity and biogenesis. Our findings underscore the essential role of TOC phosphorylation in chloroplast biogenesis and reveal an unexpected regulatory network involving RAF-like kinases in organelle development. 
    more » « less
  4. Abstract Nucleus-encoded chloroplast proteins can be transported via the secretory pathway. The molecular mechanisms underlying the trafficking of chloroplast proteins between the intracellular compartments are largely unclear, and a cargo sorting receptor has not previously been identified in the secretory pathway. Here, we report a cargo sorting receptor that is specifically present in Viridiplantae and mediates the transport of cargo proteins to the chloroplast. Using a forward genetic analysis, we identified a gene encoding a transmembrane protein (MtTP930) in barrel medic (Medicago truncatula). Mutation of MtTP930 resulted in impaired chloroplast function and a dwarf phenotype. MtTP930 is highly expressed in the aerial parts of the plant and is localized to the endoplasmic reticulum (ER) exit sites and Golgi. MtTP930 contains typical cargo sorting receptor motifs, interacts with Sar1, Sec12, and Sec24, and participates in coat protein complex II vesicular transport. Importantly, MtTP930 can recognize the cargo proteins plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase (MtNPP) and α-carbonic anhydrase (MtCAH) in the ER and then transport them to the chloroplast via the secretory pathway. Mutation of a homolog of MtTP930 in Arabidopsis (Arabidopsis thaliana) resulted in a similar dwarf phenotype. Furthermore, MtNPP-GFP failed to localize to chloroplasts when transgenically expressed in Attp930 protoplasts, implying that these cargo sorting receptors are conserved in plants. These findings fill a gap in our understanding of the mechanism by which chloroplast proteins are sorted and transported via the secretory pathway. 
    more » « less
  5. SUMMARY Plastids contain their own genomes, which are transcribed by two types of RNA polymerases. One of those enzymes is a bacterial‐type, multi‐subunit polymerase encoded by the plastid genome. The plastid‐encoded RNA polymerase (PEP) is required for efficient expression of genes encoding proteins involved in photosynthesis. Despite the importance of PEP, its DNA binding locations have not been studied on the genome‐wide scale at high resolution. We established a highly specific approach to detect the genome‐wide pattern of PEP binding to chloroplast DNA using plastid chromatin immunoprecipitation–sequencing (ptChIP‐seq). We found that in matureArabidopsis thalianachloroplasts, PEP has a complex DNA binding pattern with preferential association at genes encoding rRNA, tRNA, and a subset of photosynthetic proteins. Sigma factors SIG2 and SIG6 strongly impact PEP binding to a subset of tRNA genes and have more moderate effects on PEP binding throughout the rest of the genome. PEP binding is commonly enriched on gene promoters, around transcription start sites. Finally, the levels of PEP binding to DNA are correlated with levels of RNA accumulation, which demonstrates the impact of PEP on chloroplast gene expression. Presented data are available through a publicly available Plastid Genome Visualization Tool (Plavisto) athttps://plavisto.mcdb.lsa.umich.edu/. 
    more » « less