skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2025

Title: CellMag‐CARWash: A High Throughput Droplet Microfluidic Device for Live Cell Isolation and Single Cell Applications
Abstract The recent push toward understanding an individual cell's behavior and identifying cellular heterogeneity has created an unmet need for technologies that can probe live cells at the single‐cell level. Cells within a population are known to exhibit heterogeneous responses to environmental cues. These differences can lead to varied cellular states, behavior, and responses to therapeutics. Techniques are needed that are not only capable of processing and analyzing cellular populations at the single cell level, but also have the ability to isolate specific cell populations from a complex sample at high throughputs. The new CellMag‐Coalesce‐Attract‐Resegment Wash (CellMag‐CARWash) system combines positive magnetic selection with droplet microfluidic devices to isolate cells of interest from a mixture with >93% purity and incorporate treatments within individual droplets to observe single cell biological responses. This workflow is shown to be capable of probing the single cell extracellular vesicle (EV) secretion of MCF7 GFP cells. This article reports the first measurement of β‐Estradiol's effect on EV secretion from MCF7 cells at the single cell level. Single cell processing revealed that MCF7 GFP cells possess a heterogeneous response to β‐Estradiol stimulation with a 1.8‐fold increase relative to the control.  more » « less
Award ID(s):
1921677
PAR ID:
10539875
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Advanced Biology
Date Published:
Journal Name:
Advanced Biology
Volume:
8
Issue:
7
ISSN:
2701-0198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Macrophages hold vital roles in immune defense, wound healing, and tissue homeostasis, and have the exquisite ability to sense and respond to dynamically changing cues in their microenvironment. Much of our understanding of their behavior has been derived from studies performed using in vitro culture systems, in which the cell environment can be precisely controlled. Recent advances in miniaturized culture platforms also offer the ability to recapitulate some features of the in vivo environment and analyze cellular responses at the single‐cell level. Since macrophages are sensitive to their surrounding environments, the specific conditions in both macro‐ and micro‐scale cultures likely contribute to observed responses. In this study, we investigate how the presence of neighboring cells influence macrophage activation following proinflammatory stimulation in both bulk and micro‐scale culture. We found that in bulk cultures, higher seeding density negatively regulated the average TNF‐α secretion from individual macrophages in response to inflammatory agonists, and this effect was partially caused by the reduced cell‐to‐media volume ratio. In contrast, studies conducted using microwells to isolate single cells and groups of cells revealed that increasing numbers of cells positively influences their inflammatory activation, suggesting that the absolute cell numbers in the system may be important. In addition, a single inflammatory cell enhanced the inflammatory state of a small group of cells. Overall, this work helps to better understand how variations of macroscopic and microscopic culture environments influence studies in macrophage biology and provides insight into how the presence of neighboring cells and the soluble environment influences macrophage activation. 
    more » « less
  2. null (Ed.)
    Mechanical rupture, or lysis, of the cytoplasmic membrane is a common cell death pathway in bacteria occurring in response to β-lactam antibiotics. A better understanding of the cellular design principles governing the susceptibility and response of individual cells to lysis could indicate methods of potentiating β-lactam antibiotics and clarify relevant aspects of cellular physiology. Here, we take a single-cell approach to bacterial cell lysis to examine three cellular features—turgor pressure, mechanosensitive channels, and cell shape changes—that are expected to modulate lysis. We develop a mechanical model of bacterial cell lysis and experimentally analyze the dynamics of lysis in hundreds of single Escherichia coli cells. We find that turgor pressure is the only factor, of these three cellular features, which robustly modulates lysis. We show that mechanosensitive channels do not modulate lysis due to insufficiently fast solute outflow, and that cell shape changes result in more severe cellular lesions but do not influence the dynamics of lysis. These results inform a single-cell view of bacterial cell lysis and underscore approaches of combatting antibiotic tolerance to β-lactams aimed at targeting cellular turgor. 
    more » « less
  3. Cell–cell interactions are critical for transmitting signals among cells and maintaining their normal functions from the single-cell level to tissues. In cancer studies, interactions between drug-resistant and drug-sensitive cells play an important role in the development of chemotherapy resistance of tumors. As metabolites directly reflect the cell status, metabolomics studies provide insight into cell–cell communication. Mass spectrometry (MS) is a powerful tool for metabolomics studies, and single cell MS (SCMS) analysis can provide unique information for understanding interactions among heterogeneous cells. In the current study, we utilized a direct co-culture system (with cell–cell contact) to study metabolomics of single cells affected by cell–cell interactions in their living status. A fluorescence microscope was utilized to distinguish these two types of cells for SCMS metabolomics studies using the Single-probe SCMS technique under ambient conditions. Our results show that through interactions with drug-resistant cells, drug-sensitive cancer cells acquired significantly increased drug resistance and exhibited drastically altered metabolites. Further investigation found that the increased drug resistance was associated with multiple metabolism regulations in drug-sensitive cells through co-culture such as the upregulation of sphingomyelins lipids and lactic acid and the downregulation of TCA cycle intermediates. The method allows for direct MS metabolomics studies of individual cells labeled with fluorescent proteins or dyes among heterogeneous populations. 
    more » « less
  4. Abstract Cellular senescence is a phenotypic state that contributes to the progression of age-related disease through secretion of pro-inflammatory factors known as the senescence-associated secretory phenotype (SASP). Understanding the process by which healthy cells become senescent and develop SASP factors is critical for improving the identification of senescent cells and, ultimately, understanding tissue dysfunction. Here, we reveal how the duration of cellular stress modulates the SASP in distinct subpopulations of senescent cells. We used multiplex, single-cell imaging to build a proteomic map of senescence induction in human epithelial cells induced to senescence over the course of 31 days. We map how the expression of SASP proteins increases alongside other known senescence markers such as p53, p21, and p16INK4a. The aggregated population of cells responded to etoposide with an accumulation of stress response factors over the first 11 days, followed by a plateau in most proteins. At the single-cell level, however, we identified two distinct senescence cell populations, one defined primarily by larger nuclear area and the second by higher protein concentrations. Trajectory inference suggested that cells took one of two discrete molecular paths from unperturbed healthy cells, through a common transitional subpopulation, and ending at the discrete terminal senescence phenotypes. Our results underscore the importance of using single-cell proteomics to identify the mechanistic pathways governing the transition from senescence induction to a mature state of senescence characterized by the SASP. 
    more » « less
  5. null (Ed.)
    Unraveling the genetic and epigenetic determinants of phenotypes is critical for understanding and re-engineering biology and would benefit from improved methods to separate cells based on phenotypes. Here, we report SPOTlight, a versatile high-throughput technique to isolate individual yeast or human cells with unique spatiotemporal profiles from heterogeneous populations. SPOTlight relies on imaging visual phenotypes by microscopy, precise optical tagging of single target cells, and retrieval of tagged cells by fluorescence-activated cell sorting. To illustrate SPOTlight’s ability to screen cells based on temporal properties, we chose to develop a photostable yellow fluorescent protein for extended imaging experiments. We screened 3 million cells expressing mutagenesis libraries and identified a bright new variant, mGold, that is the most photostable yellow fluorescent protein reported to date. We anticipate that the versatility of SPOTlight will facilitate its deployment to decipher the rules of life, understand diseases, and engineer new molecules and cells. 
    more » « less