skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Familial inference: tests for hypotheses on a family of centres
Summary Statistical hypotheses are translations of scientific hypotheses into statements about one or more distributions, often concerning their centre. Tests that assess statistical hypotheses of centre implicitly assume a specific centre, e.g., the mean or median. Yet, scientific hypotheses do not always specify a particular centre. This ambiguity leaves the possibility for a gap between scientific theory and statistical practice that can lead to rejection of a true null. In the face of replicability crises in many scientific disciplines, significant results of this kind are concerning. Rather than testing a single centre, this paper proposes testing a family of plausible centres, such as that induced by the Huber loss function. Each centre in the family generates a testing problem, and the resulting family of hypotheses constitutes a familial hypothesis. A Bayesian nonparametric procedure is devised to test familial hypotheses, enabled by a novel pathwise optimization routine to fit the Huber family. The favourable properties of the new test are demonstrated theoretically and experimentally. Two examples from psychology serve as real-world case studies.  more » « less
Award ID(s):
2015552 1921523
PAR ID:
10539909
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrika
Volume:
111
Issue:
3
ISSN:
0006-3444
Format(s):
Medium: X Size: p. 1029-1045
Size(s):
p. 1029-1045
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mediation analysis aims to assess if, and how, a certain exposure influences an outcome of interest through intermediate variables. This problem has recently gained a surge of attention due to the tremendous need for such analyses in scientific fields. Testing for the mediation effect (ME) is greatly challenged by the fact that the underlying null hypothesis (i.e. the absence of MEs) is composite. Most existing mediation tests are overly conservative and thus underpowered. To overcome this significant methodological hurdle, we develop an adaptive bootstrap testing framework that can accommodate different types of composite null hypotheses in the mediation pathway analysis. Applied to the product of coefficients test and the joint significance test, our adaptive testing procedures provide type I error control under the composite null, resulting in much improved statistical power compared to existing tests. Both theoretical properties and numerical examples of the proposed methodology are discussed. 
    more » « less
  2. Abstract Four statistical selection methods for inferring transcription factor (TF)–target gene (TG) pairs were developed by coupling mean squared error (MSE) or Huber loss function, with elastic net (ENET) or least absolute shrinkage and selection operator (Lasso) penalty. Two methods were also developed for inferring pathway gene regulatory networks (GRNs) by combining Huber or MSE loss function with a network (Net)-based penalty. To solve these regressions, we ameliorated an accelerated proximal gradient descent (APGD) algorithm to optimize parameter selection processes, resulting in an equally effective but much faster algorithm than the commonly used convex optimization solver. The synthetic data generated in a general setting was used to test four TF–TG identification methods, ENET-based methods performed better than Lasso-based methods. Synthetic data generated from two network settings was used to test Huber-Net and MSE-Net, which outperformed all other methods. The TF–TG identification methods were also tested with SND1 and gl3 overexpression transcriptomic data, Huber-ENET and MSE-ENET outperformed all other methods when genome-wide predictions were performed. The TF–TG identification methods fill the gap of lacking a method for genome-wide TG prediction of a TF, and potential for validating ChIP/DAP-seq results, while the two Net-based methods are instrumental for predicting pathway GRNs. 
    more » « less
  3. ABSTRACT This article introduces a comprehensive framework to adjust a discrete test statistic for improving its hypothesis testing procedure. The adjustment minimizes the Wasserstein distance to a null‐approximating continuous distribution, tackling some fundamental challenges inherent in combining statistical significances derived from discrete distributions. The related theory justifies Lancaster's mid‐p and mean‐value chi‐squared statistics for Fisher's combination as special cases. To counter the conservative nature of Lancaster's testing procedures, we propose an updated null‐approximating distribution. It is achieved by further minimizing the Wasserstein distance to the adjusted statistics within an appropriate distribution family. Specifically, in the context of Fisher's combination, we propose an optimal gamma distribution as a substitute for the traditionally used chi‐squared distribution. This new approach yields an asymptotically consistent test that significantly improves Type I error control and enhances statistical power. 
    more » « less
  4. Meila, Marina and (Ed.)
    InProceedings{pmlr-v139-si21a, title = {}, author = {}, booktitle = {}, pages = {9649--9659}, We have developed a statistical testing framework to detect if a given machine learning classifier fails to satisfy a wide range of group fairness notions. Our test is a flexible, interpretable, and statistically rigorous tool for auditing whether exhibited biases are intrinsic to the algorithm or simply due to the randomness in the data. The statistical challenges, which may arise from multiple impact criteria that define group fairness and which are discontinuous on model parameters, are conveniently tackled by projecting the empirical measure to the set of group-fair probability models using optimal transport. This statistic is efficiently computed using linear programming, and its asymptotic distribution is explicitly obtained. The proposed framework can also be used to test for composite fairness hypotheses and fairness with multiple sensitive attributes. The optimal transport testing formulation improves interpretability by characterizing the minimal covariate perturbations that eliminate the bias observed in the audit. 
    more » « less
  5. Abstract Ecosystem models offer a rigorous way to formalize scientific theories and are critical to evaluating complex interactions among ecological and biogeochemical processes. In addition to simulation and prediction, ecosystem models are a valuable tool for testing hypotheses about mechanisms and empirical findings because they reveal critical internal processes that are difficult to observe directly.However, many ecosystem models are difficult to manage and apply by scientists who lack advanced computing skills due to complex model structures, lack of consistent documentation, and low-level programming implementation, which facilitates computing but reduces accessibility.Here, we present the ‘pnetr’ R package, which is designed to provide an easy-to-manage ecosystem modeling framework and detailed documentation in both model structure and programming. The framework implements a family of widely used PnET (net photosynthesis, evapotranspiration) ecosystem models, which are relatively parsimonious but capture essential biogeochemical cycles of water, carbon, and nutrients. We chose the R programming language since it is familiar to many ecologists and has abundant statistical modeling resources. We showcase examples of model simulations and test the effects of phenology on carbon assimilation and wood production using data measured by the Environmental Measurement Station (EMS) eddy-covariance flux tower at Harvard Forest, MA.We hope ‘pnetr’ can facilitate further development of ecological theory and increase the accessibility of ecosystem modeling and ecological forecasting. 
    more » « less