This paper describes the Stevens Institute of Technology's submission for the WMT 2022 Shared Task: Code-mixed Machine Translation (MixMT). The task consisted of two subtasks, subtask 1 Hindi/English to Hinglish and subtask 2 Hinglish to English translation. Our findings lie in the improvements made through the use of large pre-trained multilingual NMT models and in-domain datasets, as well as back-translation and ensemble techniques. The translation output is automatically evaluated against the reference translations using ROUGE-L and WER. Our system achieves the 1st position on subtask 2 according to ROUGE-L, WER, and human evaluation, 1st position on subtask 1 according to WER and human evaluation, and 3rd position on subtask 1 with respect to ROUGE-L metric.
more »
« less
This content will become publicly available on June 5, 2025
HaRMoNEE at SemEval-2024 Task 6: Tuning-based Approaches to Hallucination Recognition
This paper presents the Hallucination Recognition Model for New Experiment Evaluation (HaRMoNEE) team’s winning (#1) and #10 submissions for SemEval-2024 Task 6: Sharedtask on Hallucinations and Related Observable Overgeneration Mistakes (SHROOM)’s two subtasks. This task challenged its participants to design systems to detect hallucinations in Large Language Model (LLM) outputs. Team HaRMoNEE proposes two architectures: (1) fine-tuning an off-the-shelf transformer-based model and (2) prompt tuning large-scale Large Language Models (LLMs). One submission from the fine-tuning approach outperformed all other submissions for the model-aware subtask; one submission from the prompt-tuning approach is the 10th-best submission on the leaderboard for the modelagnostic subtask. Our systems also include pre-processing, system-specific tuning, postprocessing, and evaluation.
more »
« less
- Award ID(s):
- 2326985
- PAR ID:
- 10539980
- Publisher / Repository:
- ACL
- Date Published:
- Format(s):
- Medium: X
- Location:
- Mexico City, Mexico
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hallucinations in large language models (LLMs), where they generate fluent but factually incorrect outputs, pose challenges for applications requiring strict truthfulness. This work proposes a multi-faceted approach to detect such hallucinations across various language tasks. We leverage automatic data annotation using a proprietary LLM, fine-tuning of the Mistral-7B-instruct-v0.2 model on annotated and benchmark data, role-based and rationale-based prompting strategies, and an ensemble method combining different model outputs through majority voting. This comprehensive framework aims to improve the robustness and reliability of hallucination detection for LLM generations. Code and data1 1 Introduction The modern natural language generation (NLG) (OpenAI et al., 2023; Touvron et al., 2023) landscape faces two interconnected challenges: firstly, current neural models have a tendency to produce f luent yet inaccurate outputs, and secondly, our evaluation metrics are better suited for assessing f luency rather than correctness(Bang et al., 2023; Guerreiro et al., 2023). This phenomenon, known as "hallucination," (Ji et al., 2023) where neural networks generate plausible-sounding but factually incorrect outputs, is a significant hurdle, especially for NLG applications that require strict adherence to correctness. For instance, in machine translation(Lee et al., 2019), producing a fluent translation that deviates from the source text’s meaning renders the entire translation pipeline unreliable. This issue may arise as LLMs are trained on vast amounts of data from the internet, which can contain inaccuracies, biases, and false information. Also, it may arise due improper representations learned during training even if good quality data is 1https://github.com/souvikdgp16/shroom_compos_mentis used. As a result, LLMs can sometimes hallucinate or fabricate details, especially when prompted to discuss topics outside their training data or make inferences beyond their capabilities. Hallucination detection (Liu et al., 2022), also known as factual verification or truthfulness evaluation, identifies and mitigates these hallucinations in the outputs of LLMs. This is an active area of research and development, as it is crucial for ensuring the reliability and trustworthiness of LLMgenerated content, particularly in high-stakes domains such as healthcare, finance, and legal applications. In this task, the primary focus will be to classify whether a generation is hallucinated. This work proposes a multi-faceted approach to detecting hallucinations in large language models.more » « less
-
We provide an overview of the MSLR2022 shared task on multi-document summarization for literature reviews. The shared task was hosted at the Third Scholarly Document Processing (SDP) Workshop at COLING 2022. For this task, we provided data consisting of gold summaries extracted from review papers along with the groups of input abstracts that were synthesized into these summaries, split into two subtasks. In total, six teams participated, making 10 public submissions, 6 to the Cochrane subtask and 4 to the MSˆ2 subtask. The top scoring systems reported over 2 points ROUGE-L improvement on the Cochrane subtask, though performance improvements are not consistently reported across all automated evaluation metrics; qualitative examination of the results also suggests the inadequacy of current evaluation metrics for capturing factuality and consistency on this task. Significant work is needed to improve system performance, and more importantly, to develop better methods for automatically evaluating performance on this task.more » « less
-
We provide an overview of the MSLR2022 shared task on multi-document summarization for literature reviews. The shared task was hosted at the Third Scholarly Document Processing (SDP) Workshop at COLING 2022. For this task, we provided data consisting of gold summaries extracted from review papers along with the groups of input abstracts that were synthesized into these summaries, split into two subtasks. In total, six teams participated, making 10 public submissions, 6 to the Cochrane subtask and 4 to the MSˆ2 subtask. The top scoring systems reported over 2 points ROUGE-L improvement on the Cochrane subtask, though performance improvements are not consistently reported across all automated evaluation metrics; qualitative examination of the results also suggests the inadequacy of current evaluation metrics for capturing factuality and consistency on this task. Significant work is needed to improve system performance, and more importantly, to develop better methods for automatically evaluating performance on this task.more » « less
-
Faggioli, G; Ferro, N; Galuščáková, P; de, A (Ed.)This working note documents the participation of CS_Morgan in the ImageCLEFmedical 2024 Caption subtasks, focusing on Caption Prediction and Concept Detection challenges. The primary objectives included training, validating, and testing multimodal Artificial Intelligence (AI) models intended to automate the process of generating captions and identifying multi-concepts of radiology images. The dataset used is a subset of the Radiology Objects in COntext version 2 (ROCOv2) dataset and contains image-caption pairs and corresponding Unified Medical Language System (UMLS) concepts. To address the caption prediction challenge, different variants of the Large Language and Vision Assistant (LLaVA) models were experimented with, tailoring them for the medical domain. Additionally, a lightweight Large Multimodal Model (LMM), and MoonDream2, a small Vision Language Model (VLM), were explored. The former is the instruct variant of the Image-aware Decoder Enhanced à la Flamingo with Interleaved Cross-attentionS (IDEFICS) 9B obtained through quantization. Besides LMMs, conventional encoder-decoder models like Vision Generative Pre-trained Transformer 2 (visionGPT2) and Convolutional Neural Network-Transformer (CNN-Transformer) architectures were considered. Consequently, this enabled 10 submissions for the caption prediction task, with the first submission of LLaVA 1.6 on the Mistral 7B weights securing the 2nd position among the participants. This model was adapted using 40.1M parameters and achieved the best performance on the test data across the performance metrics of BERTScore (0.628059), ROUGE (0.250801), BLEU-1 (0.209298), BLEURT (0.317385), METEOR (0.092682), CIDEr (0.245029), and RefCLIPScore (0.815534). For the concept detection task, our single submission based on the ConvMixer architecture—a hybrid approach leveraging CNN and Transformer advantages—ranked 9th with an F1-score of 0.107645. Overall, the evaluations on the test data for the caption prediction task submissions suggest that LMMs, quantized LMMs, and small VLMs, when adapted and selectively fine-tuned using fewer parameters, have ample potential for understanding medical concepts present in images.more » « less