skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 24, 2025

Title: AggVNF: Aggregate VNF Allocation and Migration in Dynamic Cloud Data Centers
Service function chaining (SFC), consisting of a sequence of virtual network functions (VNFs), is the de-facto service provisioning mechanism in VNF-enabled data centers (VDCs). However, for the SFC, the dynamic and diverse virtual machine (VM) traffic must traverse a sequence of VNFs possibly installed at different locations at VDCs, resulting in prolonged network delay, redundant network traffic, and large consumption of cloud resources (e.g., bandwidth and energy). Such adverse effects of the SFC, which we refer to as SFC traffic storm, significantly impede its efficiency and practical implementation.In this paper, we solve the SFC traffic storm problem by proposing AggVNF, a framework wherein the VNFs of an SFC are implemented into one aggregate VNF while multiple instances of aggregate VNFs are available in the VDC. AggVNF adaptively allocates and migrates aggregate VNFs to optimize cloud resources in dynamic VDCs while achieving the load balance of VNFs. At the core of the AggVNF are two graph-theoretical problems that have not been adequately studied. We solve both problems by proposing optimal, approximate, and heuristic algorithms. Using real traffic patterns in Facebook data centers, we show that a) our VNF allocation algorithms yield traffic costs 56.3% smaller than the latest research using the SFC design, b) our VNF migration algorithms yield 84.2% less traffic than the latest research using the SFC design, and c) VNF migration is an effective technique in mitigating dynamic traffic in VDCs, reducing the total traffic cost by up to 24.8%.  more » « less
Award ID(s):
2240517
PAR ID:
10540045
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE Conference on Network Softwarization (NetSoft 2024)
Date Published:
ISBN:
979-8-3503-6958-8
Page Range / eLocation ID:
73 to 81
Format(s):
Medium: X
Location:
Saint Louis, MO, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a new algorithmic framework for traffic-optimal virtual network function (VNF) placement and migration for policy-preserving data centers (PPDCs). As dy- namic virtual machine (VM) traffic must traverse a sequence of VNFs in PPDCs, it generates more network traffic, consumes higher bandwidth, and causes additional traffic delays than a traditional data center. We design optimal, approximation, and heuristic traffic-aware VNF placement and migration algorithms to minimize the total network traffic in the PPDC. In particular, we propose the first traffic-aware constant-factor approximation algorithm for VNF placement, a Pareto-optimal solution for VNF migration, and a suite of efficient dynamic-programming (DP)-based heuristics that further improves the approximation solution. At the core of our framework are two new graph- theoretical problems that have not been studied. Using flow characteristics found in production data centers and realistic traffic patterns, we show that a) our VNF migration techniques are effective in mitigating dynamic traffic in PPDCs, reducing the total traffic cost by up to 73%, b) our VNF placement algorithms yield traffic costs 56% to 64% smaller than those by existing techniques, and c) our VNF migration algorithms outperform the state-of-the-art VM migration algorithms by up to 63% in reducing dynamic network traffic. 
    more » « less
  2. Abstract—Virtual Network Functions (VNFs) are software implementation of middleboxes (MBs) (e.g., firewalls and proxy servers) that provide performance and security guarantees for virtual machine (VM) cloud applications. In this paper, we study a new VM flow migration problem for dynamic VNF-enabled cloud data centers (VDCs). The goal is to migrate the VM flows in the dynamic VDCs to minimize the total network traffic while load-balancing VNFs with limited processing capabilities. We refer to the problem as FMDV: flow migration in dynamic VDCs. We propose an optimal and efficient minimum cost flow-based flow migration algorithm and two benefit-based efficient heuristic algorithms to solve the FMDV. Via extensive simulations, we show that our algorithms are effective in mitigating dynamic cloud traffic while achieving load balance among VNFs. In particular, all our algorithms reduce dynamic network traffic in all cases and our optimal algorithm always achieves the best traffic-mitigation effect, reducing the network traffic by up to 28% compared to the case without flow migration. 
    more » « less
  3. null (Ed.)
    Virtual Network Functions (VNFs) are software implementation of middleboxes (MBs) (e.g., firewalls) that provide performance and security guarantees for virtual machine (VM) cloud applications. In this paper we study a new flow migration problem in VNF-enabled cloud data centers where the traffic rates of VM flows are constantly changing. Our goal is to minimize the total network traffic (therefore optimizing the network resources such as bandwidth and energy) while considering that VNFs have limited processing capability. We formulate the flow migration problem and design two efficient benefit-based greedy algorithms. The simulations show that our algorithms are effective in reducing the network traffic as well as in achieving load balance among VNFs. In particular, our flow migration algorithms can reduce upto 15% network traffic compared to the case without flow migration. 
    more » « less
  4. Service function chaining (SFC), consisting of a sequence of virtual network functions (VNFs) (i.e., firewalls and load balancers), is an effective service provision technique in modern data center networks. By requiring cloud user traffic to traverse the VNFs in order, SFC im- proves the security and performance of the cloud user applications. In this paper, we study how to place an SFC inside a data center to mini- mize the network traffic of the virtual machine (VM) communication. We take a cooperative multi-agent reinforcement learning approach, wherein multiple agents collaboratively figure out the traffic-efficient route for the VM communication. Underlying the SFC placement is a fundamental graph-theoretical prob- lem called the k-stroll problem. Given a weighted graph G(V, E), two nodes s, t ∈ V , and an integer k, the k-stroll problem is to find the shortest path from s to t that visits at least k other nodes in the graph. Our work is the first to take a multi-agent learning approach to solve k- stroll problem. We compare our learning algorithm with an optimal and exhaustive algorithm and an existing dynamic programming(DP)-based heuristic algorithm. We show that our learning algorithm, although lack- ing the complete knowledge of the network assumed by existing research, delivers comparable or even better VM communication time while taking two orders of magnitude of less execution time. 
    more » « less
  5. In this work, we consider the network slice composition problem for Service Function Chains (SFCs), which addresses the issue of allocating bandwidth and VNF resources in a way that guarantees the availability of the SFC while minimizing cost. For the purpose of satisfying the availability requirement of the SFC, we adapt a traffic-weighted availability model which ensures that the long-term fraction of traffic supported by the slice topology remains above a desired threshold. We propose a method for composing a single or multi-path slice topology and for properly dimensioning VNF replicas and bandwidth on the slice paths. Through simulations, we show that our proposed algorithm can reduce the total cost of establishment compared to a dedicated protection approach in 5G networks. 
    more » « less