yEvo is a curriculum for high school students centered around evolution experiments in S. cerevisiae. To adapt the curriculum for remote instruction, we created a new protocol to evolve non-engineered yeast in the presence of caffeine. Evolved strains had increased caffeine tolerance and distinct colony morphologies. Many possessed copy number variations, transposon insertions, and mutations affecting genes with known relationships to caffeine and TOR signaling - which is inhibited by caffeine - and in other genes not previously connected with caffeine. This demonstrates that our accessible, at-home protocol is sufficient to permit novel insights into caffeine tolerance.
more »
« less
Experimental evolution of Saccharomyces cerevisiae for caffeine tolerance alters multidrug resistance and target of rapamycin signaling pathways
Abstract Caffeine is a natural compound that inhibits the major cellular signaling regulator target of rapamycin (TOR), leading to widespread effects including growth inhibition. Saccharomyces cerevisiae yeast can adapt to tolerate high concentrations of caffeine in coffee and cacao fermentations and in experimental systems. While many factors affecting caffeine tolerance and TOR signaling have been identified, further characterization of their interactions and regulation remain to be studied. We used experimental evolution of S. cerevisiae to study the genetic contributions to caffeine tolerance in yeast, through a collaboration between high school students evolving yeast populations coupled with further research exploration in university labs. We identified multiple evolved yeast populations with mutations in PDR1 and PDR5, which contribute to multidrug resistance, and showed that gain-of-function mutations in multidrug resistance family transcription factors Pdr1, Pdr3, and Yrr1 differentially contribute to caffeine tolerance. We also identified loss-of-function mutations in TOR effectors Sit4, Sky1, and Tip41 and showed that these mutations contribute to caffeine tolerance. These findings support the importance of both the multidrug resistance family and TOR signaling in caffeine tolerance and can inform future exploration of networks affected by caffeine and other TOR inhibitors in model systems and industrial applications.
more »
« less
- Award ID(s):
- 1817816
- PAR ID:
- 10540075
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- G3: Genes, Genomes, Genetics
- Volume:
- 14
- Issue:
- 9
- ISSN:
- 2160-1836
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Antifungal resistance in pathogenic fungi is a growing global health concern. Nonpathogenic laboratory strains of Saccharomyces cerevisiae are an important model for studying mechanisms of antifungal resistance that are relevant to understanding the same processes in pathogenic fungi. We have developed a series of laboratory modules in which high school students used experimental evolution to study antifungal resistance by isolating azole-resistant S. cerevisiae mutants and examining the genetic basis of resistance. We have sequenced 99 clones from these experiments and found that all possessed mutations previously shown to impact azole resistance, validating our approach. We additionally found recurrent mutations in an mRNA degradation pathway and an uncharacterized mitochondrial protein (Csf1) that have possible mechanistic connections to azole resistance. The scale of replication in this initiative allowed us to identify candidate epistatic interactions, as evidenced by pairs of mutations that occur in the same clone more frequently than expected by chance (positive epistasis) or less frequently (negative epistasis). We validated one of these pairs, a negative epistatic interaction between gain-of-function mutations in the multidrug resistance transcription factors Pdr1 and Pdr3. This high school–university collaboration can serve as a model for involving members of the broader public in the scientific process to make meaningful discoveries in biomedical research.more » « less
-
Abstract Sequencing of human patient tumors has identified recurrent missense mutations in genes encoding core histones. We report that mutations that convert histone H3 amino acid 50 from a glutamate to a lysine (H3E50K) support an oncogenic phenotype. Expression of H3E50K is sufficient to transform human cells as evidenced by an increase in cell migration and invasion, and an increase in proliferation and clonogenicity. H3E50K also increases the invasive phenotype in the context of co-occurring BRAF mutations, which are present in patient tumors characterized by H3E50K. H3E50 lies on the globular domain surface in a region that contacts H4 within the nucleosome. We find that H3E50K selectively increases chromatin accessibility and perturbs proximal H3 post-translational modifications including H3K27me3; together these changes to chromatin dynamics dysregulate gene expression to support the epithelial-to-mesenchymal transition. Functional studies using Saccharomyces cerevisiae reveal that, while yeast cells that express H3E50K as the sole copy of histone H3 show sensitivity to cellular stressors, including caffeine, H3E50K cells display some genetic interactions that are distinct from the characterized H3K36M oncohistone yeast model. Taken together, these data suggest that additional H3 mutations have the potential to support oncogenic activity and function through distinct mechanisms that dysregulate gene expression.more » « less
-
Abstract Killer toxins are antifungal proteins produced by many species of “killer” yeasts, including the brewer's and baker's yeast Saccharomyces cerevisiae. Screening 1270 strains of S. cerevisiae for killer toxin production found that 50% are killer yeasts, with a higher prevalence of yeasts isolated from human clinical samples and winemaking processes. Since many killer toxins are encoded by satellite double-stranded RNAs (dsRNAs) associated with mycoviruses, S. cerevisiae strains were also assayed for the presence of dsRNAs. This screen identified that 51% of strains contained dsRNAs from the mycovirus families Totiviridae and Partitiviridae, as well as satellite dsRNAs. Killer toxin production was correlated with the presence of satellite dsRNAs but not mycoviruses. However, in most killer yeasts, whole genome analysis identified the killer toxin gene KHS1 as significantly associated with killer toxin production. Most killer yeasts had unique spectrums of antifungal activities compared to canonical killer toxins, and sequence analysis identified mutations that altered their antifungal activities. The prevalence of mycoviruses and killer toxins in S. cerevisiae is important because of their known impact on yeast fitness, with implications for academic research and industrial application of this yeast species.more » « less
-
The target of rapamycin (TOR) kinase is an evolutionarily conserved hub of nutrient sensing and metabolic signaling. In plants, a functional connection of TOR activation with glucose availability was demonstrated, while it is yet unclear whether branched-chain amino acids (BCAAs) are a primary input of TOR signaling as they are in yeast and mammalian cells. Here, we report on the characterization of an Arabidopsis mutant over-accumulating BCAAs. Through chemical interventions targeting TOR and by examining mutants of BCAA biosynthesis and TOR signaling, we found that BCAA over-accumulation leads to up-regulation of TOR activity, which causes reorganization of the actin cytoskeleton and actin-associated endomembranes. Finally, we show that activation of TOR is concomitant with alteration of cell expansion, proliferation and specialized metabolism, leading to pleiotropic effects on plant growth and development. These results demonstrate that BCAAs contribute to plant TOR activation and reveal previously uncharted downstream subcellular processes of TOR signaling.more » « less
An official website of the United States government
