skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A 561-yr (1461-2022 CE) summer temperature reconstruction for Mid-Atlantic-Northeast USA shows connections to volcanic forcing and atmospheric circulation
Abstract Contextualizing current increases in Northern Hemisphere temperatures is precluded by the short instrumental record of the pastca.120 years and the dearth of temperature-sensitive proxy records, particularly at lower latitudes south of <50 °N. We develop a network of 29 blue intensity chronologies derived from tree rings ofTsuga canadensis(L.) Carrière andPicea rubensSarg. trees distributed across the Mid-Atlantic and Northeast USA (MANE)—a region underrepresented by multi-centennial temperature records. We use this network to reconstruct mean March-September air temperatures back to 1461 CE based on a model that explains 62% of the instrumental temperature variance from 1901−1976 CE. Since 1998 CE, MANE summer temperatures are consistently the warmest within the context of the past 561 years exceeding the 1951−1980 mean of +1.3 °C. Cool summers across MANE were frequently volcanically forced, with significant (p<0.05) temperature departures associated with 80% of the largest tropical (n=13) and extratropical (n=15) eruptions since 1461 CE. Yet, we find that more of the identified cool events in the record were likely unforced by volcanism and either related to stochastic variability or atmospheric circulation via significant associations (p<0.05) to regional, coastal sea-surface temperatures, 500-hpa geopotential height, and 300-hpa meridional and zonal wind vectors. Expanding the MANE network to the west and south and combining it with existing temperature-sensitive proxies across North America is an important next step toward producing a gridded temperature reconstruction field for North America.  more » « less
Award ID(s):
2002482 2002494
PAR ID:
10540076
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Climatic Change
Volume:
177
Issue:
9
ISSN:
0165-0009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Summer temperatures across eastern North America (hereafter East) will soon reach a level consistently above any observation experienced during the instrumental period. Increasing temperatures will have negative impacts on natural (e.g., water, plant and animal communities) and human (e.g., health, infrastructure, economies) systems upon which the large and growing centres of human population across the region depend. Within the network of Northern Hemisphere tree‐ring temperature proxy records, one of the most obvious geographic holes is the East, where few temperature‐sensitive proxies exist. Here we present the first steps towards building a network of temperature‐sensitive proxy records across the East using blue light intensity (BI) methods applied to the tree rings of multiple temperature sensitive tree species situated from North Carolina to Maine, USA. Our overall objective is to report on the most viable species for BI analysis across different regions of the East (e.g., Southeast US, Midwest US, Northeast US/Canadian Maritimes) by exploring temporal (e.g., since ca. 1900) and spatial relationships between instrumental temperatures and BI metrics. We found BI to be a strong predictor of March–October mean air temperature (R2= 0.61) across the Northeast US/eastern Canada, and Sep‐Oct maximum air temperature (R2= 0.42) across the Southeast US. Of all species tested,Tsuga canadensisandPicea rubenscontained the strongest BI temperature signal. Adding more BI sites from these and potentially other species, as well as inclusion of other temperature proxies (e.g., ring widths) will allow for the development of a skilful broad‐scale and long‐term temperature field reconstruction across the East. 
    more » « less
  2. Abstract Massive, long‐livedSiderastreaandDiploriacorals are species commonly used for sea surface temperature (SST) reconstructions in the North Atlantic. However, they are rarely found to exceed 200 years in age. Thus, it is imperative to continuously develop alternative taxa for paleoreconstructions.Colpophyllia natans, a highly populous tropical North Atlantic coral, are known to grow large colonies, potentially containing environmental records spanning several hundreds of years. However, its low density and complicated architecture poses a challenge in extracting climate signals from this coral. This study presents the first monthly‐resolved climate calibration ofColpophyllia natansand validates its utility as a new paleoarchive, relative toSiderastrea siderea.Linear regressions of monthly and interannual coral Sr/Ca with instrumental SST reveal robust, significant relationships (p < 0.05), indicating that microsampling along a single thecal wall ofC. natansallowed for robust climate reconstructions. Additionally, both corals capture similar SST variations (t‐test,p ≥ 0.05), which allowed for the generation of a single, composite interspecies SST record that correlates with instrumental SST even more strongly (p < 0.0001) than the individual corals. Mean annual and boreal summer interspecies SST correlate significantly with North Atlantic SST indices (p < 0.05), demonstrating the ability to capture regional, long‐term SST trends in the North Atlantic. Spatial correlation maps of boreal winter interspecies SST to instrumental SST and geopotential height anomalies reveal coherent spatial patterns linked to the North Atlantic Oscillation. Our findings suggest thatColpophyllia natanshas enormous potential as a new paleoclimate archive for reconstructing temporal and spatial SST variability in the tropical Atlantic. 
    more » « less
  3. Abstract. Noise in Holocene paleoclimate reconstructions can hamper the detection of centennial to millennial climate variations and diagnoses of the dynamics involved. This paper uses multiple ensembles of reconstructions to separate signal and noise and determine what, if any, centennial to millennial variations influenced North America during the past 7000 years. To do so, ensembles of temperature and moisture reconstructions were compared across four different spatial scales: multi-continent, regional, sub-regional, and local. At each scale, two independent multi-record ensembles were compared to detect any centennial to millennial departures from the long Holocene trends, which correlate more than expected from random patterns. In all cases, the potential centennial to millennial variations had small magnitudes. However, at least two patterns of centennial to millennial variability appear evident. First, large-scale variations included a prominent Mid-Holocene anomaly from 5600–5000 yr BP that increased mean effective moisture and produced temperature anomalies of different signs in different regions. The changes shifted the north–south temperature gradient in mid-latitude North America with a pattern similar to that of the North Atlantic Oscillation (NAO). Second, correlated multi-century (∼ 350 years) variations produce a distinct spectral signature in temperature and hydroclimate records along the western Atlantic margin. Both patterns differ from random variations, but they express distinct spatiotemporal characteristics consistent with separate controlling dynamics. 
    more » « less
  4. Abstract Projected warming of global surface air temperatures will further exacerbate droughts, wildfires, and other agents of ecosystem stress. We use latewood blue intensity from high‐elevationPicea engelmanniito reconstruct late‐summer maximum air temperature for the Greater Yellowstone Ecoregion (GYE) spanning 770–2019 CE. Using a robust regression model (r2 = 0.60), the 1,250‐year reconstruction reveals 2016 as the single‐warmest year and the warming trend since ca. 2000 as the most intense. The Medieval Climate Anomaly contained the highest‐ranking warm event (1050–1070 CE) and was characterized by substantial multidecadal variability rather than a period of prolonged, homogeneous warming. We document regional expression of past warm and cool events, such as an anomalously warm period spanning the fifteenth to sixteenth centuries, and the Maunder and Dalton minima of the Little Ice Age. Summer temperature variability across the GYE shows multicentennial agreement with trends in solar irradiance, volcanic activity, snowpack, and other regional‐to‐hemispheric temperature records. 
    more » « less
  5. Parts of the northwest Atlantic Ocean, including the Gulf of Maine, along the northeastern coast of the United States, are warming at a rate as much as four times faster than the global ocean, according to instrumental and satellite records. In addition to the longer-term temperature increases, the frequency and severity of marine heat waves have been increasing. Combined, the ecological impacts are numerous and concerning, yet our understanding of past climate in this region is incomplete due to sparse and short-duration instrumental records. Here we present annually resolved oxygen isotope records from the marine bivalve, Arctica islandica, from five locations ranging from Jonesport and Seguin Island in the Gulf of Maine to Long Island, New York, Cape May, New Jersey, and Ocean City, Maryland in the Mid-Atlantic Bight, a span of over 870 km along the Atlantic coast. Several of the isotope records span the last 100 years or more and all records show coherent, substantial warming since at least 1980 CE. The level of warming indicated in the shell oxygen isotopes is comparable to the 0.5 °C per decade (1980-2020 CE) warming also shown in the instrumental record of sea surface temperature from Boothbay Harbor along the central coast in the Gulf of Maine. These five spatially distant isotope records span different oceanographic conditions and dynamics, including water mass sources, yet they all indicate a substantial warming in recent decades, likely related to increased anthropogenic warming. Beyond reconstructing seawater temperature prior to instrumental records, a major goal of this work is to disentangle the global warming signal from these records to better understand the underlying ocean dynamics also influencing these records. 
    more » « less