skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Activity triangles: a new approach to measure activity spaces
Abstract There is an on-going challenge to describe, analyse and visualise the actual and potential extent of human spatial behaviour. The concept of an activity space has been used to examine how people interact with their environment and how the actual or potential spatial extent of individual spatial behaviour can be defined. In this paper, we introduce a new method for measuring activity spaces. We first focus on the definitions and the applications of activity space measures, identifying their respective limitations. We then present our new method, which is based on the theoretical concept of significant locations, that is, places where people spent most of their time. We identify locations of significant places from GPS trajectories and define the activity space of an individual as a set of the first three significant places forming a so-called “activity triangle”. Our new method links the distances travelled for different activities to whether or not people group their activities, which is not possible using existing methods of measuring activity spaces. We test our method on data from a GPS-based travel survey across three towns is Scotland and look at the variations in size and shape of the designed activity triangle among people of different age and gender. We also compare our activity triangle with five other activity spaces and conclude by providing possible routes for improvement of activity space measures when using real human movement data (GPS data).  more » « less
Award ID(s):
2117455
PAR ID:
10540210
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Link
Date Published:
Journal Name:
Journal of Geographical Systems
Volume:
25
Issue:
4
ISSN:
1435-5930
Page Range / eLocation ID:
489 to 517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Seeking spatiotemporal patterns about how citizens interact with the urban space is critical for understanding how cities function. Such interactions were studied in various forms focusing on patterns of people’s presence, action, and transition in the urban environment, which are defined as human-urban interactions in this paper. Using human activity datasets that utilize mobile positioning technology for tracking the locations and movements of individuals, researchers developed stochastic models to uncover preferential return behaviors and recurrent transitional activity structures in human-urban interactions. Ad-hoc heuristics and spatial clustering methods were applied to derive meaningful activity places in those studies. However, the lack of semantic meaning in the recorded locations makes it difficult to examine the details about how people interact with different activity places. In this study, we utilized geographic context-aware Twitter data to investigate the spatiotemporal patterns of people’s interactions with their activity places in different urban settings. To test consistency of our findings, we used geo-located tweets to derive the activity places in Twitter users’ location histories over three major U.S. metropolitan areas: Greater Boston Area, Chicago, and San Diego, where the geographic context of each location was inferred from its closest land use parcel. The results showed striking spatial and temporal similarities in Twitter users’ interactions with their activity places among the three cities. By using entropy-based predictability measures, this study not only confirmed the preferential return behaviors as people tend to revisit a few highly frequented places but also revealed detailed characteristics of those activity places. 
    more » « less
  2. null (Ed.)
    Abstract Background Personal privacy is a significant concern in the era of big data. In the field of health geography, personal health data are collected with geographic location information which may increase disclosure risk and threaten personal geoprivacy. Geomasking is used to protect individuals’ geoprivacy by masking the geographic location information, and spatial k-anonymity is widely used to measure the disclosure risk after geomasking is applied. With the emergence of individual GPS trajectory datasets that contains large volumes of confidential geospatial information, disclosure risk can no longer be comprehensively assessed by the spatial k-anonymity method. Methods This study proposes and develops daily activity locations (DAL) k-anonymity as a new method for evaluating the disclosure risk of GPS data. Instead of calculating disclosure risk based on only one geographic location (e.g., home) of an individual, the new DAL k-anonymity is a composite evaluation of disclosure risk based on all activity locations of an individual and the time he/she spends at each location abstracted from GPS datasets. With a simulated individual GPS dataset, we present case studies of applying DAL k-anonymity in various scenarios to investigate its performance. The results of applying DAL k-anonymity are also compared with those obtained with spatial k-anonymity under these scenarios. Results The results of this study indicate that DAL k-anonymity provides a better estimation of the disclosure risk than does spatial k-anonymity. In various case-study scenarios of individual GPS data, DAL k-anonymity provides a more effective method for evaluating the disclosure risk by considering the probability of re-identifying an individual’s home and all the other daily activity locations. Conclusions This new method provides a quantitative means for understanding the disclosure risk of sharing or publishing GPS data. It also helps shed new light on the development of new geomasking methods for GPS datasets. Ultimately, the findings of this study will help to protect individual geoprivacy while benefiting the research community by promoting and facilitating geospatial data sharing. 
    more » « less
  3. This article describes how GIS is increasingly being used to explore, analyze, and visualize qualitative social data across space. The authors applied a number of geovisualization and analysis approaches to spaces identified on maps by survey participants, in the context of a Human Ecology Mapping (HEM) project in western North Carolina. HEM is an applied research endeavor that has been used in a number of other locations to tease out relationships between people and landscapes by identifying both the activities people do in certain locations and the values they hold about those locations. The authors' western NC project gathered location information through participant sketch mapping, and activities, values, and social/demographic data in a survey. They combined these in a GIS and present a selection of visualization and analyses that demonstrate the effectiveness of GIS techniques in understanding places, how they are used, and which people use them for what purposes. 
    more » « less
  4. Gaussian processes (GPs) are very widely used for modeling of unknown functions or surfaces in applications ranging from regression to classification to spatial processes. Although there is an increasingly vast literature on applications, methods, theory and algorithms related to GPs, the overwhelming majority of this literature focuses on the case in which the input domain corresponds to a Euclidean space. However, particularly in recent years with the increasing collection of complex data, it is commonly the case that the input domain does not have such a simple form. For example, it is common for the inputs to be restricted to a non-Euclidean manifold, a case which forms the motivation for this article. In particular, we propose a general extrinsic framework for GP modeling on manifolds, which relies on embedding of the manifold into a Euclidean space and then constructing extrinsic kernels for GPs on their images. These extrinsic Gaussian processes (eGPs) are used as prior distributions for unknown functions in Bayesian inferences. Our approach is simple and general, and we show that the eGPs inherit fine theoretical properties from GP models in Euclidean spaces. We consider applications of our models to regression and classification problems with predictors lying in a large class of manifolds, including spheres, planar shape spaces, a space of positive definite matrices, and Grassmannians. Our models can be readily used by practitioners in biological sciences for various regression and classification problems, such as disease diagnosis or detection. Our work is also likely to have impact in spatial statistics when spatial locations are on the sphere or other geometric spaces. 
    more » « less
  5. In clinical settings, most automatic recognition systems use visual or sensory data to recognize activities. These systems cannot recognize activities that rely on verbal assessment, lack visual cues, or do not use medical devices. We examined speech-based activity and activity-stage recognition in a clinical domain, making the following contributions. (1) We collected a high-quality dataset representing common activities and activity stages during actual trauma resuscitation events-the initial evaluation and treatment of critically injured patients. (2) We introduced a novel multimodal network based on audio signal and a set of keywords that does not require a high-performing automatic speech recognition (ASR) engine. (3) We designed novel contextual modules to capture dynamic dependencies in team conversations about activities and stages during a complex workflow. (4) We introduced a data augmentation method, which simulates team communication by combining selected utterances and their audio clips, and showed that this method contributed to performance improvement in our data-limited scenario. In offline experiments, our proposed context-aware multimodal model achieved F1-scores of 73.2±0.8% and 78.1±1.1% for activity and activity-stage recognition, respectively. In online experiments, the performance declined about 10% for both recognition types when using utterance-level segmentation of the ASR output. The performance declined about 15% when we omitted the utterance-level segmentation. Our experiments showed the feasibility of speech-based activity and activity-stage recognition during dynamic clinical events. 
    more » « less