skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Sequential Direct and Indirect Effects of Mountain Uplift, Climatic Niche, and Floral Trait Evolution on Diversification Dynamics in an Andean Plant Clade
Abstract Why and how organismal lineages radiate is commonly studied through either assessing abiotic factors (biogeography, geomorphological processes, and climate) or biotic factors (traits and interactions). Despite increasing awareness that both abiotic and biotic processes may have important joint effects on diversification dynamics, few attempts have been made to quantify the relative importance and timing of these factors, and their potentially interlinked direct and indirect effects, on lineage diversification. We here combine assessments of historical biogeography, geomorphology, climatic niche, vegetative, and floral trait evolution to test whether these factors jointly, or in isolation, explain diversification dynamics of a Neotropical plant clade (Merianieae, Melastomataceae). After estimating ancestral areas and the changes in niche and trait disparity over time, we employ Phylogenetic Path Analyses as a synthesis tool to test eleven hypotheses on the individual direct and indirect effects of these factors on diversification rates. We find strongest support for interlinked effects of colonization of the uplifting Andes during the mid-Miocene and rapid abiotic climatic niche evolution in explaining a burst in diversification rate in Merianieae. Within Andean habitats, later increases in floral disparity allowed for the exploitation of wider pollination niches (i.e., shifts from bee to vertebrate pollinators), but did not affect diversification rates. Our approach of including both vegetative and floral trait evolution, rare in assessments of plant diversification in general, highlights that the evolution of woody habit and larger flowers preceded the colonization of the Andes, but was likely critical in enabling the rapid radiation in montane environments. Overall, and in concert with the idea that ecological opportunity is a key element of evolutionary radiations, our results suggest that a combination of rapid niche evolution and trait shifts was critical for the exploitation of newly available niche space in the Andes in the mid-Miocene. Further, our results emphasize the importance of incorporating both abiotic and biotic factors into the same analytical framework if we aim to quantify the relative and interlinked effects of these processes on diversification.  more » « less
Award ID(s):
1553114 2055525
PAR ID:
10540314
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Systematic Biology
Volume:
73
Issue:
3
ISSN:
1063-5157
Format(s):
Medium: X Size: p. 594-612
Size(s):
p. 594-612
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundPollinators impose strong selection on floral traits, but other abiotic and biotic agents also drive the evolution of floral traits and influence plant reproduction. Global change is expected to have widespread effects on biotic and abiotic systems, resulting in novel selection on floral traits in future conditions. ScopeGlobal change has depressed pollinator abundance and altered abiotic conditions, thereby exposing flowering plant species to novel suites of selective pressures. Here, we consider how biotic and abiotic factors interact to shape the expression and evolution of floral characteristics (the targets of selection), including floral size, colour, physiology, reward quantity and quality, and longevity, amongst other traits. We examine cases in which selection imposed by climatic factors conflicts with pollinator-mediated selection. Additionally, we explore how floral traits respond to environmental changes through phenotypic plasticity and how that can alter plant fecundity. Throughout this review, we evaluate how global change might shift the expression and evolution of floral phenotypes. ConclusionsFloral traits evolve in response to multiple interacting agents of selection. Different agents can sometimes exert conflicting selection. For example, pollinators often prefer large flowers, but drought stress can favour the evolution of smaller flowers, and the size of floral organs can evolve as a trade-off between selection mediated by these opposing actors. Nevertheless, few studies have manipulated abiotic and biotic agents of selection factorially to disentangle their relative strengths and directions of selection. The literature has more often evaluated plastic responses of floral traits to stressors than it has considered how abiotic factors alter selection on these traits. Global change will likely alter the selective landscape through changes in the abundance and community composition of mutualists and antagonists and novel abiotic conditions. We encourage future work to consider the effects of abiotic and biotic agents of selection on floral evolution, which will enable more robust predictions about floral evolution and plant reproduction as global change progresses. 
    more » « less
  2. Abstract Hillieae is a group of ∼30 florally diverse, Neotropical epiphyte species. Species richness peaks in southern Central America and taxa display bat, hawkmoth, or hummingbird pollination syndromes. A phylogenetic framework is needed to understand floral and biogeographic evolution. We used target enrichment data to infer a species tree and a Bayesian time-calibrated tree including ∼83% of the species in the group. We inferred ancestral biogeography and pollination syndromes, described species’ realized bioclimatic niches via a principal component analysis, and estimated significant niche shifts using Ornstein–Uhlenbeck models to understand how different abiotic and biotic variables have shaped Hillieae evolution. We estimated that Hillieae originated in southern Central America 19 Ma and that hawkmoth pollination is the ancestral character state. Multiple independent shifts in pollination syndrome, biogeographic distribution, and realized bioclimatic niche have occurred, though bioclimatic niche is largely conserved. Using generalized linear models, we identify two interactions—between species’ biogeographic ranges and pollination syndromes, and between phylogenetic covariance and pollination syndromes—that additively affect the degree of bioclimatic niche overlap between species. Regional variation in pollination syndrome diversity and patterns of species bioclimatic niche overlap indicate a link between biogeography and species ecology in driving Hillieae diversification and syndrome evolution. 
    more » « less
  3. Abstract Climate change can impact plant fitness and population persistence directly through changing abiotic conditions and indirectly through its effects on species interactions. Pollination and seed predation are important biotic interactions that can impact plant fitness, but their impact on population growth rates relative to the role of direct climatic effects is unknown.We combined 13 years of experiments on pollen limitation of seed set and pre‐dispersal seed predation inIpomopsis aggregata, a subalpine wildflower, with a long‐term demographic study that has documented declining population growth with earlier spring snowmelt date. We determined how pollen limitation and seed predation changed with snowmelt date over 21 years and incorporated those effects into an integral projection model to assess relative impacts of biotic factors on population growth.Both pollen limitation and the difference in stigma pollen load between pollen‐supplemented and control plants declined over years. Neither pollen limitation nor seed predation changed detectably with snowmelt date, suggesting an absence of indirect effects of that specific abiotic factor on these indices of biotic interactions. The projected biotic impacts of pollen limitation and seed predation on population growth rate were small compared to factors associated with snowmelt date. Providing full pollination would delay the projected date when earlier snowmelt will cause populations to fall below replacement by only 14 years.Synthesis. Full pollination and elimination of seed predation would not compensate for the strong detrimental effects of early snowmelt on population growth rate, which inI. aggregataappears driven largely by abiotic environmental factors. The reduction over two decades in pollen limitation also suggests that natural selection on floral traits may weaken with continued climate change. These results highlight the value of studying both abiotic factors and biotic interactions to understand how climate change will influence plant populations. 
    more » « less
  4. PremiseThe distributions of plant clades are shaped by abiotic and biotic factors as well as historical aspects such as center of origin. Dispersals between distant areas may lead to niche evolution when lineages are established in new environments. Alternatively, dispersing lineages may exhibit niche conservatism, moving between areas with similar environmental conditions. Here we test these contrasting hypotheses in the Datureae clade (Solanaceae). MethodsWe used maximum likelihood methods to estimate the ancestral range of Datureae along with the history of biogeographic events. We then characterized the niche of each taxon using climatic and soil variables and tested for shifts in environmental niche optima. Finally, we examined how these shifts relate to the niche breadth of taxa and clades within Datureae and the degree of overlap between them. ResultsDatureae originated in the Andes and subsequently expanded its range to North America and non‐Andean regions of South America. The ancestral niche, and that of mostDaturaandTrompettiaspecies, is dry, whileBrugmansiaspecies likely shifted toward a more mesic environment. Nonetheless, most Datureae present moderate to high overlap in niche breadth today. ConclusionsThe expansion of Datureae into North America was associated with niche conservatism, with dispersal into similarly dry areas as occupied by the ancestral lineage. Subsequent niche evolution, including the apparent shift to a mesic niche inBrugmansia, diversified the range of habitats occupied by species in the tribe Datureae but also led to significant niche overlap among the three genera. 
    more » « less
  5. Abstract A central goal at the interface of ecology and conservation is understanding how the relationship between biodiversity and ecosystem function (B–EF) will shift with changing climate. Despite recent theoretical advances, studies which examine temporal variation in the functional traits and mechanisms (mass ratio effects and niche complementarity effects) that underpin the B–EF relationship are lacking.Here, we use 13 years of data on plant species composition, plant traits, local‐scale abiotic variables, above‐ground net primary productivity (ANPP), and climate from the alpine tundra of Colorado (USA) to investigate temporal dynamics in the B–EF relationship. To assess how changing climatic conditions may alter the B–EF relationship, we built structural equation models (SEMs) for 11 traits across 13 years and evaluated the power of different trait SEMs to predict ANPP, as well as the relative contributions of mass ratio effects (community‐weighted mean trait values; CWM), niche complementarity effects (functional dispersion; FDis) and local abiotic variables. Additionally, we coupled linear mixed effects models with Multimodel inference methods to assess how inclusion of trait–climate interactions might improve our ability to predict ANPP through time.In every year, at least one SEM exhibited good fit, explaining between 19.6% and 57.2% of the variation in ANPP. However, the identity of the trait which best explained ANPP changed depending on winter precipitation, with leaf area, plant height and foliar nitrogen isotope content (δ15N) SEMs performing best in high, middle and low precipitation years, respectively. Regardless of trait identity, CWMs exerted a stronger influence on ANPP than FDis and total biotic effects were always greater than total abiotic effects. Multimodel inference reinforced the results of SEM analysis, with the inclusion of climate–trait interactions marginally improving our ability to predict ANPP through time.Synthesis. Our results suggest that temporal variation in climatic conditions influences which traits, mechanisms and abiotic variables were most responsible for driving the B–EF relationship. Importantly, our findings suggest that future research should consider temporal variability in the B–EF relationship, particularly how the predictive power of individual functional traits and abiotic variables may fluctuate as conditions shift due to climate change. 
    more » « less