skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phylotranscriptomics unveil a Paleoproterozoic-Mesoproterozoic origin and deep relationships of the Viridiplantae
Abstract The Viridiplantae comprise two main clades, the Chlorophyta (including a diverse array of marine and freshwater green algae) and the Streptophyta (consisting of the freshwater charophytes and the land plants). Lineages sister to core Chlorophyta, informally refer to as prasinophytes, form a grade of mainly planktonic green algae. Recently, one of these lineages, Prasinodermophyta, which is previously grouped with prasinophytes, has been identified as the sister lineage to both Chlorophyta and Streptophyta. Resolving the deep relationships among green plants is crucial for understanding the historical impact of green algal diversity on marine ecology and geochemistry, but has been proven difficult given the ancient timing of the diversification events. Through extensive taxon and gene sampling, we conduct large-scale phylogenomic analyses to resolve deep relationships and reveal the Prasinodermophyta as the lineage sister to Chlorophyta, raising questions about the necessity of classifying the Prasinodermophyta as a distinct phylum. We unveil that incomplete lineage sorting is the main cause of discordance regarding the placement of Prasinodermophyta. Molecular dating analyses suggest that crown-group green plants and crown-group Prasinodermophyta date back to the Paleoproterozoic-Mesoproterozoic. Our study establishes a plausible link between oxygen levels in the Paleoproterozoic-Mesoproterozoic and the origin of Viridiplantae.  more » « less
Award ID(s):
2021207
PAR ID:
10540447
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Page Range / eLocation ID:
10.1038/s41467-023-41137-5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The colonization of land by plants generated opportunities for the rise of new heterotrophic life forms, including humankind. A unique event underpinned this massive change to earth ecosystems—the advent of eukaryotic green algae. Today, an abundant marine green algal group, the prasinophytes, alongside prasinodermophytes and nonmarine chlorophyte algae, is facilitating insights into plant developments. Genome-level data allow identification of conserved proteins and protein families with extensive modifications, losses, or gains and expansion patterns that connect to niche specialization and diversification. Here, we contextualize attributes according to Viridiplantae evolutionary relationships, starting with orthologous protein families, and then focusing on key elements with marked differentiation, resulting in patchy distributions across green algae and plants. We place attention on peptidoglycan biosynthesis, important for plastid division and walls; phytochrome photosensors that are master regulators in plants; and carbohydrate-active enzymes, essential to all manner of carbohydratebiotransformations. Together with advances in algal model systems, these areas are ripe for discovering molecular roles and innovations within and across plant and algal lineages. 
    more » « less
  2. Over the last decade, collaborative efforts in plant evolutionary research have elucidated the phylogenetic relationships in the green plant lineage and provided insights into the emergence of land plants from a group of terrestrial and freshwater streptophyte algae. A foremost finding was that the genetic underpinnings of several key traits emerged much earlier than land plants — they were present in their streptophyte algal pro- genitors. Currently, the field is at a crossroads, transitioning from genomics-informed descriptions of strep- tophyte algae to a functional understanding of molecular mechanisms underlying their unique physiology, as well as to understanding their origin and evolution. Major progress has been made in the development of valuable genomic resources, new tools and new model systems in streptophyte algae. In this review, we high- light community-developed resources to study these closest algal relatives of land plants to gain insights into the evolution of land plant traits. 
    more » « less
  3. The infraorder Astacidea, comprising marine clawed lobsters and freshwater crayfish, include some of the most recognizable decapod crustaceans, many being harvested commercially for human consumption and aquaculture. While molecular analyses have elucidated relationships among extant lineages, the composition and placement of several fossil groups within Astacidea remain poorly resolved, with several conflicting phylogenetic hypotheses and taxonomic classifications being proposed in previous works. Among these controversial groups, Erymoidea have variably been placed in Astacidea or Glypheidea, a largely extinct infraorder of predominantly pseudochelate marine lobsters. Cladistic relationships of Stenochiroidea have also been problematic, having been regarded as ancestral to freshwater crayfish (Astacida) or extant marine lobsters (Nephropidae). Failure to reach a consensus regarding these groups can be at least partially attributed to the prevalence of morphological convergence and limited taxon sampling. To clarify evolutionary relationships among fossil and extant taxa, a Bayesian phylogenetic analysis of morphological and molecular data (mitochondrial genes: 12S, 16S and COI; nuclear genes: 18S, 28S and H3) was performed that included extensive taxon sampling of all currently recognized families of Astacidea as well as representatives of several potential sister groups. To overcome error introduced by homoplasy, relationships among extant taxa, as revealed by previous molecular analyses, were used to identify morphological characters with potentially robust phylogenetic signal. The resulting phylogeny places erymids within Glypheidea and supports a sister relationship between Astacidea and Glaessnericarididae. Stenochiroidea was found to be polyphyletic, with most genera forming a clade sister to Nephropidae; Pseudastacus is moved to Protastacidae, which resolves as the sister taxon to freshwater crayfish. The relationships among living and fossil taxa presented here provide new insight into the origins and evolutionary histories of the major lineages of marine clawed lobsters and freshwater crayfish. 
    more » « less
  4. Green plants (Viridiplantae) include around 450,000–500,000 species of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life. 
    more » « less
  5. Transitions to terrestriality have been associated with major animal radiations including land snails and slugs in Stylommatophora (>20 000 described species), the most successful lineage of ‘pulmonates’ (a non-monophyletic assemblage of air-breathing gastropods). However, phylogenomic studies have failed to robustly resolve relationships among traditional pulmonates and affiliated marine lineages that comprise clade Panpulmonata (Mollusca, Gastropoda), especially two key taxa: Sacoglossa, a group including photosynthetic sea slugs, and Siphonarioidea, intertidal limpet-like snails with a non-contractile pneumostome (narrow opening to a vascularized pallial cavity). To clarify the evolutionary history of the panpulmonate radiation, we performed phylogenomic analyses on datasets of up to 1160 nuclear protein-coding genes for 110 gastropods, including 40 new transcriptomes for Sacoglossa and Siphonarioidea. All 18 analyses recovered Sacoglossa as the sister group to a clade we named Pneumopulmonata, within which Siphonarioidea was sister to the remaining lineages in most analyses. Comparative modelling indicated shifts to marginal habitat (estuarine, mangrove and intertidal zones) preceded and accelerated the evolution of a pneumostome, present in the pneumopulmonate ancestor along with a one-sided plicate gill. These findings highlight key intermediate stages in the evolution of air-breathing snails, supporting the hypothesis that adaptation to marginal zones played an important role in major sea-to-land transitions. 
    more » « less