skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transition Path Sampling Study of Engineered Enzymes That Catalyze the Morita–Baylis–Hillman Reaction: Why Is Enzyme Design so Difficult?
It is hoped that artificial enzymes designed in laboratories can be efficient alternatives to chemical catalysts that have been used to synthesize organic molecules. However, the design of artificial enzymes is challenging and requires a detailed molecular-level analysis to understand the mechanism they promote in order to design efficient variants. In this study, we computationally investigate the mechanism of proficient Morita-Baylis-Hillman enzymes developed using a combination of computational design and directed evolution. The powerful transition path sampling method coupled with in-depth post-processing analysis has been successfully used to elucidate the different chemical pathways, transition states, protein dynamics, and free energy barriers of reactions catalyzed by such laboratory-optimized enzymes. This research provides an explanation for how different chemical modifications in an enzyme affect its catalytic activity in ways that are not predictable by static design algorithms.  more » « less
Award ID(s):
2244981
PAR ID:
10540726
Author(s) / Creator(s):
; ;
Corporate Creator(s):
Editor(s):
Merz, K
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of Chemical Information and Modeling
Volume:
64
Issue:
6
ISSN:
1549-9596
Page Range / eLocation ID:
2101 to 2111
Subject(s) / Keyword(s):
directed evolution, transition path sampling, free energy, mechanism
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The hydrolysis of extremely stable peptide and phosphoester bonds by metalloenzymes is of great interest in biotechnology and industry. However, due to various shortcomings only a handful of these enzymes have been used for industrial applications. Therefore, in the last two decades intensive scientific efforts have been made in rational development of small molecules to imitate the activities of natural enzymes. Despite these efforts, their currently available synthetic analogues are inferior in terms of selectivity, catalytic rate, and turnover and the designing of efficient artificial metalloenzymes remains a distant goal. This is a challenging area of research that necessitates a rigorous integration between experiments and theory. The realization of this goal requires knowledge of the catalytic activities of both enzymes and their existing analogues and an effective fusion of that knowledge. This article reviews several studies in which a plethora of computational techniques have been successfully employed to investigate the functioning of two chemically promiscuous mono‐ and binuclear metalloenzymes (insulin degrading enzyme and glycerophosphodiesterase) and two synthetic analogues. These studies will help us derive fundamental principles of peptide and phosphoester hydrolysis and pave the way to design efficient small molecule catalysts for these reactions. This article is categorized under:Structure and Mechanism > Reaction Mechanisms and Catalysis 
    more » « less
  2. null (Ed.)
    Utilizing electric fields to catalyze chemical reactions is not a new idea, but in enzymology it undergoes a renaissance, inspired by Warhsel’s concept of electrostatic preorganization. According to this concept, the source of the immense catalytic efficiency of enzymes is the intramolecular electric field that permanently favors the reaction transition state over the reactants. Within enzyme design, computational efforts have fallen short in designing enzymes with natural-like efficacy. The outcome could improve if long-range electrostatics (often omitted in current protocols) would be optimized. Here, we highlight the major developments in methods for analyzing and designing electric fields generated by the protein scaffolds, in order to both better understand how natural enzymes function, and aid artificial enzyme design. 
    more » « less
  3. Diégues, M.; Bäckvall, J.-E.; Pàmies, O. (Ed.)
    Transition metal catalysts and enzymes are ubiquitous tools for chemical synthesis. Potential benefits of combining complementary properties of these catalysts have driven efforts to create artificial metalloenzymes (ArMs), hybrid constructs comprised of synthetic metal centers embedded within protein scaffolds. This unique composition necessitates the use of synthetic chemistry, bioconjugation methodology, and protein engineering for ArM formation. Despite this challenge, a range of approaches for ArM formation have been developed. This review provides an overview these different approaches and discussion of potential advantages and disadvantages of each. 
    more » « less
  4. Enzymes catalyze biochemical reactions through precise positioning of substrates, cofactors, and amino acids to modulate the transition-state free energy. However, the role of conformational dynamics remains poorly understood due to poor experimental access. This shortcoming is evident withEscherichia colidihydrofolate reductase (DHFR), a model system for the role of protein dynamics in catalysis, for which it is unknown how the enzyme regulates the different active site environments required to facilitate proton and hydride transfer. Here, we describe ligand-, temperature-, and electric-field-based perturbations during X-ray diffraction experiments to map the conformational dynamics of the Michaelis complex of DHFR. We resolve coupled global and local motions and find that these motions are engaged by the protonated substrate to promote efficient catalysis. This result suggests a fundamental design principle for multistep enzymes in which pre-existing dynamics enable intermediates to drive rapid electrostatic reorganization to facilitate subsequent chemical steps. 
    more » « less
  5. Enzymes have evolved to catalyse challenging chemical transformations with high efficiency and selectivity. Although a number of artificial systems have been developed to recapitulate the catalytic activity of natural enzymes, they are mostly limited to catalysing relatively simple reactions owing to their ability to mimic only the active metal centres of natural enzymes, without incorporating the proximal amino acids or cofactors. Here we report a metal–organic framework-based artificial enzyme (metal–organic–zyme, MOZ) by integrating active metal centres, proximal amino acids and other cofactors into a tunable metal–organic framework monolayer. We design two libraries of MOZs to perform photocatalytic CO2 reduction and water oxidation reactions. Through tuning the incorporated amino acids in the MOZs, we systematically optimize the activity and selectivity of these libraries. Combining these optimized MOZs into a single system realizes complete artificial photosynthesis in the reaction of (1 + n) CO2 + 2H2O → CH4 + nCO + (2 + n/2)O2. 
    more » « less