skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Model-Free Robust Average-Reward Reinforcement Learning
Robust Markov decision processes (MDPs) address the challenge of model uncertainty by optimizing the worst-case performance over an uncertainty set of MDPs. In this paper, we focus on the robust average-reward MDPs under the modelfree setting. We first theoretically characterize the structure of solutions to the robust averagereward Bellman equation, which is essential for our later convergence analysis. We then design two model-free algorithms, robust relative value iteration (RVI) TD and robust RVI Q-learning, and theoretically prove their convergence to the optimal solution. We provide several widely used uncertainty sets as examples, including those def ined by the contamination model, total variation, Chi-squared divergence, Kullback-Leibler (KL) divergence and Wasserstein distance.  more » « less
Award ID(s):
2229873
PAR ID:
10540763
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Krause, Andreas; Brunskill, Emma; Cho, Kyunghyun; Engelhardt; Barbara; Sabato, Sivan; Scarlett, Jonathan
Publisher / Repository:
Proceedings of Machine Learning Research
Date Published:
Volume:
202
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robust Markov decision processes (MDPs) aim to find a policy that optimizes the worst-case performance over an uncertainty set of MDPs. Existing studies mostly have focused on the robust MDPs under the discounted reward criterion, leaving the ones under the average-reward criterion largely unexplored. In this paper, we develop the first comprehensive and systematic study of robust average-reward MDPs, where the goal is to optimize the long-term average performance under the worst case. Our contributions are four-folds: (1) we prove the uniform convergence of the robust discounted value function to the robust average-reward function as the discount factor γ goes to 1; (2) we derive the robust average-reward Bellman equation, characterize the structure of its solution set, and prove the equivalence between solving the robust Bellman equation and finding the optimal robust policy; (3) we design robust dynamic programming algorithms, and theoretically characterize their convergence to the optimal policy; and (4) we design two model-free algorithms unitizing the multi-level Monte-Carlo approach, and prove their asymptotic convergence 
    more » « less
  2. In robust Markov decision processes (MDPs), the uncertainty in the transition kernel is addressed by finding a policy that optimizes the worst-case performance over an uncertainty set of MDPs. While much of the literature has focused on discounted MDPs, robust average-reward MDPs remain largely unexplored. In this paper, we focus on robust average-reward MDPs, where the goal is to find a policy that optimizes the worst-case average reward over an uncertainty set. We first take an approach that approximates average-reward MDPs using discounted MDPs. We prove that the robust discounted value function converges to the robust average-reward as the discount factor goes to 1, and moreover when it is large, any optimal policy of the robust discounted MDP is also an optimal policy of the robust average-reward. We further design a robust dynamic programming approach, and theoretically characterize its convergence to the optimum. Then, we investigate robust average-reward MDPs directly without using discounted MDPs as an intermediate step. We derive the robust Bellman equation for robust average-reward MDPs, prove that the optimal policy can be derived from its solution, and further design a robust relative value iteration algorithm that provably finds its solution, or equivalently, the optimal robust policy. 
    more » « less
  3. Robust Markov Decision Processes (MDPs) offer a promising framework for computing reliable policies under model uncertainty. While policy gradient methods have gained increasing popularity in robust discounted MDPs, their application to the average-reward criterion remains largely unexplored. This paper proposes a Robust Projected Policy Gradient (RP2G), the first generic policy gradient method for robust average-reward MDPs (RAMDPs) that is applicable beyond the typical rectangularity assumption on transition ambiguity. In contrast to existing robust policy gradient algorithms, RP2G incorporates an adaptive decreasing tolerance mechanism for efficient policy updates at each iteration. We also present a comprehensive convergence analysis of RP2G for solving ergodic tabular RAMDPs. Furthermore, we establish the first study of the inner worst-case transition evaluation problem in RAMDPs, proposing two gradient-based algorithms tailored for rectangular and general ambiguity sets, each with provable convergence guarantees. Numerical experiments confirm the global convergence of our new algorithm and demonstrate its superior performance. 
    more » « less
  4. Robust Markov decision processes (MDPs) compute reliable solutions for dynamic decision problems with partially-known transition probabilities. Unfortunately, accounting for uncertainty in the transition probabilities significantly increases the computational complexity of solving robust MDPs, which limits their scalability. This paper describes new, efficient algorithms for solving the common class of robust MDPs with s- and sa-rectangular ambiguity sets defined by weighted L1 norms. We propose partial policy iteration, a new, efficient, flexible, and general policy iteration scheme for robust MDPs. We also propose fast methods for computing the robust Bellman operator in quasi-linear time, nearly matching the ordinary Bellman operator's linear complexity. Our experimental results indicate that the proposed methods are many orders of magnitude faster than the state-of-the-art approach, which uses linear programming solvers combined with a robust value iteration. 
    more » « less
  5. Uncertainty Quantification (UQ) is vital for decision makers as it offers insights into the potential reliability of data and model, enabling more informed and risk-aware decision-making. Graphical models, capable of representing data with complex dependencies, are widely used across domains. Existing sampling-based UQ methods are unbiased but cannot guarantee convergence and are time-consuming on large-scale graphs. There are fast UQ methods for graphical models with closed-form solutions and convergence guarantee but with uncertainty underestimation. We propose LinUProp, a UQ method that utilizes a novel linear propagation of uncertainty to model uncertainty among related nodes additively instead of multiplicatively, to offer linear scalability, guaranteed convergence, and closed-form solutions without underestimating uncertainty. Theoretically, we decompose the expected prediction error of the graphical model and prove that the uncertainty computed by LinUProp is the generalized variance component of the decomposition. Experimentally, we demonstrate that LinUProp is consistent with the sampling-based method but with linear scalability and fast convergence. Moreover, LinUProp outperforms competitors in uncertainty-based active learning on four real-world graph datasets, achieving higher accuracy with a lower labeling budget. 
    more » « less