skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Hydrogen atom abstraction as a synthetic route to a square planar Co II complex with a redox-active tetradentate PNNP ligand
Dehydrogenation of the ligand backbone of a bis(amido)bis(phosphine) Co complex is achieved through hydrogen atom abstraction. The new unsaturated backbone of the tetradentate ligand renders the ligand in the resulting Co complex redox-active.  more » « less
Award ID(s):
2101002
PAR ID:
10540803
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Chemical Science
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The molecular tetravalent oxidation state for praseodymium is observed in solution via oxidation of the anionic trivalent precursor [K][Pr 3+ (NP(1,2-bis- t Bu-diamidoethane)(NEt 2 )) 4 ] (1-Pr(NP*)) with AgI at −35 °C. The Pr 4+ complex is characterized in solution via cyclic voltammetry, UV-vis-NIR electronic absorption spectroscopy, and EPR spectroscopy. Electrochemical analyses of [K][Ln 3+ (NP(1,2-bis- t Bu-diamidoethane)(NEt 2 )) 4 ] (Ln = Nd and Dy) by cyclic voltammetry are reported and, in conjunction with theoretical modeling of electronic structure and oxidation potential, are indicative of principal ligand oxidations in contrast to the metal-centered oxidation observed for 1-Pr(NP*). The identification of a tetravalent praseodymium complex in in situ UV-vis and EPR experiments is further validated by theoretical modeling of the redox chemistry and the UV-vis spectrum. The latter study was performed by extended multistate pair-density functional theory (XMS-PDFT) and implicates a multiconfigurational ground state for the tetravalent praseodymium complex. 
    more » « less
  2. Bis(benzene-1,2-diolato-κ 2 O , O ′)bis(dimethyl sulfoxide-κ O )titanium(IV), [Ti(C 6 H 4 O 2 ) 2 (C 2 H 6 OS) 2 ], crystallizes with two crystallographically independent molecules in the space group P 2 1 / c emulating orthorhombic Pbca symmetry (β = 90.0445 (9)°]. The two molecules are related by pseudo-glide symmetry, broken by modulation of each one catecholate and dimethyl sulfoxide (DMSO) ligand. Twinning by pseudomerohedry was observed [twin ratio 0.5499 (7):0.4401 (7)]. Complex 3 was obtained by heating of diprotonated titanium tris-catecholate precursor 2 H in DMSO, by formal displacement of a catechol molecule by two DMSO molecules. Complex 3 is just the second heteroleptic, mono-nuclear, neutral bis-catecholate complex with TiO 6 metal coordination, the only other one being its bis-DMF analogue 6 . The two molecules of 3 exhibit a distorted octahedral geometry. The geometry and distortions from ideal symmetry of 3 are discussed and compared to 6 and to cationic tris-catecholate titanium complexes. 
    more » « less
  3. This work centers around the nickel complexes derived from two tetrahydrosalen-type proligands: N , N ′-bis(2-hydroxybenzyl)- o -phenylenediamine (H 2 salophan) and N , N ′-bis(2-hydroxy-3-methylbenzyl)- o -phenylenediamine (H 2 salophan_Me). The reaction of H 2 salophan with Ni(OAc) 2 ·4H 2 O generates a dinuclear complex Ni 2 (Hsalophan) 2 (OAc) 2 or Na[Ni 2 (salophan) 2 (OAc)] when NaOH is added to assist ligand deprotonation. The reaction of H 2 salophan_Me with Ni(OAc) 2 ·4H 2 O, however, yields a mononuclear complex Ni(Hsalophan_Me) 2 . Unlike the corresponding salen-type nickel complexes, these tetrahydrosalen-type complexes are paramagentic and air sensitive (in solution). Oxidation by O 2 or peroxides results in dehydrogenation of the ligand backbone to form the salen-type complexes. 
    more » « less
  4. A series of low-valent iron complexes that feature a phosphine-substituted α-diimine (DI) ligand have been synthesized. Reduction of (Ph2PPrDI)FeBr2 with an excess of Na/Hg in the presence of carbon monoxide afforded the corresponding dicarbonyl complex, (Ph2PPrDI)Fe(CO)2. Through multinuclear NMR and single crystal X-ray diffraction analysis, this complex was found to possess a 3-coordinate DI ligand. Upon heating for 10 days at 110 °C while applying intermittent vacuum, (Ph2PPrDI)Fe(CO)2 was successfully converted to the corresponding monocarbonyl complex, (Ph2PPrDI)Fe(CO), which was found to feature a tetradentate chelate. Similar reactivity was explored using the analogous bis(tert-butyl)phosphine-substituted ligand, tBu2PPrDI. Addition of this chelate to FeBr2 afforded (tBu2PPrDI)FeBr2, and subsequent reduction yielded (tBu2PPrDI)FeBr, which was found to possess a tridentate DI ligand by single crystal X-ray diffraction. Performing the reduction of (tBu2PPrDI)FeBr2 in the presence of CO afforded the corresponding dicarbonyl complex, (tBu2PPrDI)Fe(CO)2. Like aryl-substituted (Ph2PPrDI)Fe(CO)2, alkyl-substituted (tBu2PPrDI)Fe(CO)2 was found to feature a pendant phosphine arm. However, heating (tBu2PPrDI)Fe(CO)2 under vacuum did not allow for phosphine substitution and conversion to the corresponding monocarbonyl complex, highlighting the importance of phosphine π-acidity for substitution and the stabilization of low-valent iron. 
    more » « less
  5. 2-(Arylamino)-4,6-di- tert -butylphenols containing 4-substituted phenyl groups ( R apH 2 ) react with oxobis(ethylene glycolato)osmium( vi ) in acetone to give square pyramidal bis(amidophenoxide)oxoosmium( vi ) complexes. A mono-amidophenoxide complex is observed as an intermediate in these reactions. Reactions in dichloromethane yield the diolate ( H ap) 2 Os(OCH 2 CH 2 O). Both the glycolate and oxo complex are converted to the corresponding cis -dichloride complex on treatment with chlorotrimethylsilane. The novel bis(aminophenol) ligand EganH 4 , containing an ethylene glycol dianthranilate bridge, forms the chelated bis(amidophenoxide) complex (Egan)OsO, where the two nitrogen atoms of the tetradentate ligand bind in the trans positions of the square pyramid. Structural and spectroscopic features of the complexes are described well by an osmium( vi )-amidophenoxide formulation, with the amount of π donation from ligand to metal increasing markedly as the co-ligands change from oxo to diolate to dichloride. In the oxo-bis(amidophenoxides), the symmetry of the ligand π orbitals results in only one effective π donor interaction, splitting the energy of the two osmium-oxo π* orbitals and rendering the osmium-oxo bonding appreciably anisotropic. 
    more » « less