skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Beyond monopole electrostatics in regulating conformations of intrinsically disordered proteins
Abstract Conformations and dynamics of an intrinsically disordered protein (IDP) depend on its composition of charged and uncharged amino acids, and their specific placement in the protein sequence. In general, the charge (positive or negative) on an amino acid residue in the protein is not a fixed quantity. Each of the ionizable groups can exist in an equilibrated distribution of fully ionized state (monopole) and an ion-pair (dipole) state formed between the ionizing group and its counterion from the background electrolyte solution. The dipole formation (counterion condensation) depends on the protein conformation, which in turn depends on the distribution of charges and dipoles on the molecule. Consequently, effective charges of ionizable groups in the IDP backbone may differ from their chemical charges in isolation—a phenomenon termed charge-regulation. Accounting for the inevitable dipolar interactions, that have so far been ignored, and using a self-consistent procedure, we present a theory of charge-regulation as a function of sequence, temperature, and ionic strength. The theory quantitatively agrees with both charge reduction and salt-dependent conformation data of Prothymosin-alpha and makes several testable predictions. We predict charged groups are less ionized in sequences where opposite charges are well mixed compared to sequences where they are strongly segregated. Emergence of dipolar interactions from charge-regulation allows spontaneous coexistence of two phases having different conformations and charge states, sensitively depending on the charge patterning. These findings highlight sequence dependent charge-regulation and its potential exploitation by biological regulators such as phosphorylation and mutations in controlling protein conformation and function.  more » « less
Award ID(s):
2213103
PAR ID:
10540882
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
PNAS Nexus
Volume:
3
Issue:
9
ISSN:
2752-6542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Peptide amphiphiles are a class of molecules that can self-assemble into a variety of supramolecular structures, including high-aspect-ratio nanofibers. It is challenging to model and predict the charges in these supramolecular nanofibers because the ionization state of the peptides are not fixed but liable to change due to the acid-base equilibrium that is coupled to the structural organization of the peptide amphiphile molecules. Here, we have developed a theoretical model to describe and predict the amount of charge found on self-assembled peptide amphiphiles as a function of pH and ion concentration. In particular, we computed the amount of charge of peptide amphiphiles nanofibers with the sequence C 16 − V 2 A 2 E 2 . In our theoretical formulation, we consider charge regulation of the carboxylic acid groups, which involves the acid-base chemical equilibrium of the glutamic acid residues and the possibility of ion condensation. The charge regulation is coupled with the local dielectric environment by allowing for a varying dielectric constant that also includes a position-dependent electrostatic solvation energy for the charged species. We find that the charges on the glutamic acid residues of the peptide amphiphile nanofiber are much lower than the same functional group in aqueous solution. There is a strong coupling between the charging via the acid-base equilibrium and the local dielectric environment. Our model predicts a much lower degree of deprotonation for a position-dependent relative dielectric constant compared to a constant dielectric background. Furthermore, the shape and size of the electrostatic potential as well as the counterion distribution are quantitatively and qualitatively different. These results indicate that an accurate model of peptide amphiphile self-assembly must take into account charge regulation of acidic groups through acid–base equilibria and ion condensation, as well as coupling to the local dielectric environment. 
    more » « less
  2. Intrinsically disordered proteins and regions (IDPs) are involved in vital biological processes. To understand the IDP function, often controlled by conformation, we need to find the link between sequence and conformation. We decode this link by integrating theory, simulation, and machine learning (ML) where sequence-dependent electrostatics is modeled analytically while nonelectrostatic interaction is extracted from simulations for many sequences and subsequently trained using ML. The resulting Hamiltonian, combining physics-based electrostatics and machine-learned nonelectrostatics, accurately predicts sequence-specific global and local measures of conformations beyond the original observable used from the simulation. This is in contrast to traditional ML approaches that train and predict a specific observable, not a Hamiltonian. Our formalism reproduces experimental measurements, predicts multiple conformational features directly from sequence with high throughput that will give insights into IDP design and evolution, and illustrates the broad utility of using physics-based ML to train unknown parts of a Hamiltonian, rather than a specific observable, in combination with known physics. 
    more » « less
  3. The exceptional elastic resilience of some protein materials underlies essential biomechanical functions with broad interest in biomedical fields. However, molecular design of elastic resilience is restricted to amino acid sequences of a handful of naturally occurring resilient proteins such as resilin and elastin. Here, we exploit non-resilin/elastin sequences that adopt kinetically stabilized, random coil–dominated conformations to achieve near-perfect resilience comparable with that of resilin and elastin. We also show a direct correlation between resilience and Raman-characterized protein conformations. Furthermore, we demonstrate that metastable conformation of proteins enables the construction of mechanically graded protein materials that exhibit spatially controlled conformations and resilience. These results offer insights into molecular mechanisms of protein elastomers and outline a general conformation-driven strategy for developing resilient and functional protein materials. 
    more » « less
  4. Intrinsically disordered proteins (IDPs) that lie close to the empirical boundary separating IDPs and folded proteins in Uversky’s charge–hydropathy plot may behave as “marginal IDPs” and sensitively switch conformation upon changes in environment (temperature, crowding, and charge screening), sequence, or both. In our search for such a marginal IDP, we selected Huntingtin-interacting protein K (HYPK) near that boundary as a candidate; PKIα, also near that boundary, has lower secondary structure propensity; and Crk1, just across the boundary on the folded side, has higher secondary structure propensity. We used a qualitative Förster resonance energy transfer-based assay together with circular dichroism to simultaneously probe global and local conformation. HYPK shows several unique features indicating marginality: a cooperative transition in end-to-end distance with temperature, like Crk1 and folded proteins, but unlike PKIα; enhanced secondary structure upon crowding, in contrast to Crk1 and PKIα; and a cross-over from salt-induced expansion to compaction at high temperature, likely due to a structure-to-disorder transition not seen in Crk1 and PKIα. We then tested HYPK’s sensitivity to charge patterning by designing charge-flipped variants including two specific sequences with identical amino acid composition that markedly differ in their predicted size and response to salt. The experimentally observed trends, also including mutants of PKIα, verify the predictions from sequence charge decoration metrics. Marginal proteins like HYPK show features of both folded and disordered proteins that make them sensitive to physicochemical perturbations and structural control by charge patterning. 
    more » « less
  5. Scholes, Gregory D (Ed.)
    Linear and nonlinear dielectric responses of solutions of intrinsically disordered proteins (IDPs) were analyzed by combining molecular dynamics simulations with formal theories. A large increment of the linear dielectric function over that of the solvent is found and related to large dipole moments of IDPs. The nonlinear dielectric effect (NDE) of the IDP far exceeds that of the bulk electrolyte, offering a route to interrogate protein conformational and rotational statistics and dynamics. Conformational flexibility of the IDP makes the dipole moment statistics consistent with the gamma/log-normal distributions and contributes to the NDE through the dipole moment’s non-Gaussian parameter. The intrinsic non-Gaussian parameter of the dipole moment combines with the protein osmotic compressibility in the nonlinear dielectric susceptibility when dipolar correlations are screened by the electrolyte. The NDE is dominated by dipolar correlations when electrolyte screening is reduced. 
    more » « less