skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geometric Graphs with Unbounded Flip-Width
We consider the flip-width of geometric graphs, a notion of graph width recently introduced by Toruńczyk. We prove that many different types of geometric graphs have unbounded flip-width. These include interval graphs, permutation graphs, circle graphs, intersection graphs of axis-aligned line segments or axis-aligned unit squares, unit distance graphs, unit disk graphs, visibility graphs of simple polygons, β-skeletons, 4-polytopes, rectangle of influence graphs, and 3d Delaunay triangulations.  more » « less
Award ID(s):
2202961
PAR ID:
10540965
Author(s) / Creator(s):
;
Editor(s):
Pankratov, D
Publisher / Repository:
Proceedings of the 35th Canadian Conference on Computational Geometry (CCCG)
Date Published:
Page Range / eLocation ID:
197-206
Format(s):
Medium: X
Location:
Montreal, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    We present the first fully dynamic connectivity data structures for geometric intersection graphs achieving constant query time and sublinear amortized update time for many classes of geometric objects in 2D . Our data structures can answer connectivity queries between two objects, as well as "global" connectivity queries (e.g., deciding whether the entire graph is connected). Previously, the data structure by Afshani and Chan (ESA'06) achieved such bounds only in the special case of axis-aligned line segments or rectangles but did not work for arbitrary line segments or disks, whereas the data structures by Chan, Pătraşcu, and Roditty (FOCS'08) worked for more general classes of geometric objects but required n^{Ω(1)} query time and could not handle global connectivity queries. Specifically, we obtain new data structures with O(1) query time and amortized update time near n^{4/5}, n^{7/8}, and n^{20/21} for axis-aligned line segments, disks, and arbitrary line segments respectively. Besides greatly reducing the query time, our data structures also improve the previous update times for axis-aligned line segments by Afshani and Chan (from near n^{10/11} to n^{4/5}) and for disks by Chan, Pătraşcu, and Roditty (from near n^{20/21} to n^{7/8}). 
    more » « less
  2. Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)
    We study the time complexity of the discrete k-center problem and related (exact) geometric set cover problems when k or the size of the cover is small. We obtain a plethora of new results: - We give the first subquadratic algorithm for rectilinear discrete 3-center in 2D, running in Õ(n^{3/2}) time. - We prove a lower bound of Ω(n^{4/3-δ}) for rectilinear discrete 3-center in 4D, for any constant δ > 0, under a standard hypothesis about triangle detection in sparse graphs. - Given n points and n weighted axis-aligned unit squares in 2D, we give the first subquadratic algorithm for finding a minimum-weight cover of the points by 3 unit squares, running in Õ(n^{8/5}) time. We also prove a lower bound of Ω(n^{3/2-δ}) for the same problem in 2D, under the well-known APSP Hypothesis. For arbitrary axis-aligned rectangles in 2D, our upper bound is Õ(n^{7/4}). - We prove a lower bound of Ω(n^{2-δ}) for Euclidean discrete 2-center in 13D, under the Hyperclique Hypothesis. This lower bound nearly matches the straightforward upper bound of Õ(n^ω), if the matrix multiplication exponent ω is equal to 2. - We similarly prove an Ω(n^{k-δ}) lower bound for Euclidean discrete k-center in O(k) dimensions for any constant k ≥ 3, under the Hyperclique Hypothesis. This lower bound again nearly matches known upper bounds if ω = 2. - We also prove an Ω(n^{2-δ}) lower bound for the problem of finding 2 boxes to cover the largest number of points, given n points and n boxes in 12D . This matches the straightforward near-quadratic upper bound. 
    more » « less
  3. Chambers, Erin W.; Gudmundsson, Joachim (Ed.)
    In SoCG 2022, Conroy and Tóth presented several constructions of sparse, low-hop spanners in geometric intersection graphs, including an O(nlog n)-size 3-hop spanner for n disks (or fat convex objects) in the plane, and an O(nlog² n)-size 3-hop spanner for n axis-aligned rectangles in the plane. Their work left open two major questions: (i) can the size be made closer to linear by allowing larger constant stretch? and (ii) can near-linear size be achieved for more general classes of intersection graphs? We address both questions simultaneously, by presenting new constructions of constant-hop spanners that have almost linear size and that hold for a much larger class of intersection graphs. More precisely, we prove the existence of an O(1)-hop spanner for arbitrary string graphs with O(nα_k(n)) size for any constant k, where α_k(n) denotes the k-th function in the inverse Ackermann hierarchy. We similarly prove the existence of an O(1)-hop spanner for intersection graphs of d-dimensional fat objects with O(nα_k(n)) size for any constant k and d. We also improve on some of Conroy and Tóth’s specific previous results, in either the number of hops or the size: we describe an O(nlog n)-size 2-hop spanner for disks (or more generally objects with linear union complexity) in the plane, and an O(nlog n)-size 3-hop spanner for axis-aligned rectangles in the plane. Our proofs are all simple, using separator theorems, recursion, shifted quadtrees, and shallow cuttings. 
    more » « less
  4. Bodlaender, Hans L (Ed.)
    In this paper, we show that computing canonical labelings of graphs of bounded rank-width is in TC². Our approach builds on the framework of Köbler & Verbitsky (CSR 2008), who established the analogous result for graphs of bounded treewidth. Here, we use the framework of Grohe & Neuen (ACM Trans. Comput. Log., 2023) to enumerate separators via split-pairs and flip functions. In order to control the depth of our circuit, we leverage the fact that any graph of rank-width k admits a rank decomposition of width ≤ 2k and height O(log n) (Courcelle & Kanté, WG 2007). This allows us to utilize an idea from Wagner (CSR 2011) of tracking the depth of the recursion in our computation. Furthermore, after splitting the graph into connected components, it is necessary to decide isomorphism of said components in TC¹. To this end, we extend the work of Grohe & Neuen (ibid.) to show that the (6k+3)-dimensional Weisfeiler-Leman (WL) algorithm can identify graphs of rank-width k using only O(log n) rounds. As a consequence, we obtain that graphs of bounded rank-width are identified by FO + C formulas with 6k+4 variables and quantifier depth O(log n). Prior to this paper, isomorphism testing for graphs of bounded rank-width was not known to be in NC. 
    more » « less
  5. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    Finding the diameter of a graph in general cannot be done in truly subquadratic assuming the Strong Exponential Time Hypothesis (SETH), even when the underlying graph is unweighted and sparse. When restricting to concrete classes of graphs and assuming SETH, planar graphs and minor-free graphs admit truly subquadratic algorithms, while geometric intersection graphs of unit balls, congruent equilateral triangles, and unit segments do not. Unit-disk graphs is one of the major open cases where the complexity of diameter computation remains unknown. More generally, it is conjectured that a truly subquadratic time algorithm exists for pseudo-disk graphs where each pair of objects has at most two intersections on the boundary. In this paper, we show a truly-subquadratic algorithm of running time O^~(n^{2-1/18}), for finding the diameter in a unit-disk graph, whose output differs from the optimal solution by at most 2. This is the first algorithm that provides an additive guarantee in distortion, independent of the size or the diameter of the graph. Our algorithm requires two important technical elements. First, we show that for the intersection graph of pseudo-disks, the graph VC-dimension - either of k-hop balls or the distance encoding vectors - is 4. This contrasts to the VC dimension of the pseudo-disks themselves as geometric ranges (which is known to be 3). Second, we introduce a clique-based r-clustering for geometric intersection graphs, which is an analog of the r-division construction for planar graphs. We also showcase the new techniques by establishing new results for distance oracles for unit-disk graphs with subquadratic storage and O(1) query time. The results naturally extend to unit L₁ or L_∞-disks and fat pseudo-disks of similar size. Last, if the pseudo-disks additionally have bounded ply, we have a truly subquadratic algorithm to find the exact diameter. 
    more » « less