The electrical properties of the entropy stabilized oxides: Zr6Nb2O17, Zr6Ta2O17, Hf6Nb2O17and Hf6Ta2O17were characterized. The results and the electrical properties of the products (i.e. ZrO2, HfO2, Nb2O5and Ta2O5) led us to hypothesize the A6B2O17family is a series of mixed ionic-electronic conductors. Conductivity measurements in varying oxygen partial pressure were performed on A6Nb2O17and A6Ta2O17.The results indicate that electrons are involved in conduction in A6Nb2O17while holes play a role in conduction of A6Ta2O17. Between 900 °C–950 °C, the charge transport in the A6B2O17system increases in Ar atmosphere. A combination of DTA/DSC and in situ high temperature X-ray diffraction was performed to identify a potential mechanism for this increase. In-situ high temperature X-ray diffraction in Ar does not show any phase transformation. Based on this, it is hypothesized that a change in the oxygen sub-lattice is the cause for the shift in high temperature conduction above 900 °C–950 °C. This could be:
This content will become publicly available on October 1, 2025
We report on the structure and dielectric properties of ternary A6B2O17(A = Zr; B = Nb, Ta) thin films and ceramics. Thin films are produced via sputter deposition from dense, phase‐homogenous bulk ceramic targets, which are synthesized through a reactive sintering process at 1500°C. Crystal structure, microstructure, chemistry, and dielectric properties are characterized by X‐ray diffraction and reflectivity, atomic force microscopy, X‐ray photoelectron spectroscopy, and capacitance analysis, respectively. We observe relative permittivities approaching 60 and loss tangents <1 × 10−2across the 103–105 Hz frequency range in the Zr6Nb2O17and Zr6Ta2O17phases. These observations create an opportunity space for this novel class of disordered oxide electroceramics.
more » « less- Award ID(s):
- 2011839
- PAR ID:
- 10541053
- Publisher / Repository:
- The American Ceramic Society
- Date Published:
- Journal Name:
- Journal of the American Ceramic Society
- Volume:
- 107
- Issue:
- 10
- ISSN:
- 0002-7820
- Page Range / eLocation ID:
- 6868 to 6875
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
(i) Nb(Ta)4+- oxygen vacancy associate formation/dissociation,(ii) formation of oxygen/oxygen vacancy complexes(iii) ordering/disordering of oxygen vacancies and/or(iv) oxygen-based superstructure commensurate or incommensurate transitions. In-situ high temperature neutron diffraction up to 1050 °C is required to help elucidate the origins of this large increase in conductivity. -
Abstract This work systematically investigates the thermodynamic stability of SiaOb(M)cCdstructures derived from polymeric precursors incorporating metal fillers: Ta, Nb, and Hf, at 1200 and 1500°C. Structural characterization of the polymer derived ceramics (PDCs) employs X‐ray diffraction, Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy. Enthalpies of formation relative to crystalline components (metal oxide, silica, silicon carbide, and graphite) are obtained from thermodynamic measurements by high temperature oxide melt solution calorimetry. The enthalpies of formation (∆H°f, comp) of Ta‐1200, Hf‐1200, Nb‐1200, Ta‐1500, Hf‐1500, and Nb‐1500 specimens are −137.82 ± 9.72, −256.31 ± 8.97, −82.80 ± 9.82, −182.80 ± 7.85, −292.54 ± 9.38, −224.98 ± 9.60 kJ/mol, respectively. Overall incorporation of Hf results in most thermodynamically stable structures at all synthesis temperatures. SiaOb(M)cCdspecimens employing Nb fillers undergo the most stable structural evolution in this temperature range. The results indicate strong thermodynamic drive for carbothermal reduction of metal oxide domains. Incorporation of Ta provides the greatest stabilization of SiO3C mixed bonding environments. Ultimately, the choice of metal filler influences composition, structural evolution, and thermodynamic stability in PDCs.
-
Wafer-scale synthesis of p-type TMD films is critical for its commercialization in next-generation electro/optoelectronics. In this work, wafer-scale intrinsic n-type WS2films and in situ Nb-doped p-type WS2films were synthesized through atomic layer deposition (ALD) on 8-inch
α -Al2O3/Si wafers, 2-inch sapphire, and 1 cm2GaN substrate pieces. The Nb doping concentration was precisely controlled by altering cycle number of Nb precursor and activated by postannealing. WS2n-FETs and Nb-doped p-FETs with different Nb concentrations have been fabricated using CMOS-compatible processes. X-ray photoelectron spectroscopy, Raman spectroscopy, and Hall measurements confirmed the effective substitutional doping with Nb. The on/off ratio and electron mobility of WS2n-FET are as high as 105and 6.85 cm2 V-1 s-1, respectively. In WS2p-FET with 15-cycle Nb doping, the on/off ratio and hole mobility are 10 and 0.016 cm2 V-1 s-1, respectively. The p-n structure based on n- and p- type WS2films was proved with a 104rectifying ratio. The realization of controllablein situ Nb-doped WS2films paved a way for fabricating wafer-scale complementary WS2FETs. -
The use of thin Ta3N5films in tandem Si‐Ta3N5photoelectrochemical (PEC) devices motivates understanding of the surface Ta3N5properties, as they may have a strong effect on the device performance. The bulk and surface properties can change as a function of nitridation temperature; thus its effect is studied, ranging from 700 to 1000 °C, on the PEC performance, morphology, and composition of thin (10 nm) Ta3N5films deposited on planar and nanostructured Si substrates. Scanning electron microscopy (SEM), scanning Auger electron spectroscopy (AES), X‐ray photoelectron spectroscopy (XPS), and X‐ray diffraction (XRD) are employed to gain fundamental understanding in the differences of the Ta3N5films. By controlling Ta3N5morphology and composition with nitridation temperature, it is determined that Ta3N5with high crystallinity and surface N/Ta ratio, synthesized at 800 °C, yields the highest PEC performance with the earliest photocurrent onset and highest photocurrent. Samples nitrided at 700 °C have lower crystallinity and that likely leads to lower performance. For samples nitrided at temperatures above 800 °C, the N/Ta ratio decreases forming chemically reduced tantalum nitride phases, as well as N‐deficient and correspondingly O‐rich morphological domains that can adversely affect the PEC performance as hole‐blocking layers or O trap‐mediated recombination centers at the surface of Ta3N5.
-
Determination of anisotropic optical properties of MOCVD grown m-plane α-(Al x Ga 1−x ) 2 O 3 alloys
Abstract The anisotropic dielectric functions (DF) of corundum structured
m -planeα -(Alx Ga1−x )2O3thin films (up tox = 0.76) grown onm -plane sapphire substrate by metalorganic CVD have been investigated. IR and visible–UV spectroscopic ellipsometry yields the DFs, while X-ray diffraction revealed the lattice parameters (a ,m ,c ), showing the samples are almost fully relaxed. Analysis of the IR DFs from 250 to 6000 cm−1by a complex Lorentz oscillator model yields the anisotropic IR active phononsE u andA 2u and the shift towards higher wavenumbers with increasing Al content. Analyzing the UV DFs from 0.5 to 6.6 eV we find the change in the dielectric limitsε ∞and the shift of the Γ-point transition energies with increasing Al content. This results in anisotropic bowing parameters forα -(Alx Ga1−x )2O3ofb ⊥= 2.1 eV andb ∣∣= 1.7 eV.