We investigate the power of randomness in two-party communication complexity. In particular, we study the model where the parties can make a constant number of queries to a function with an efficient one-sided-error randomized protocol. The complexity classes defined by this model comprise the Randomized Boolean Hierarchy, which is analogous to the Boolean Hierarchy but defined with one-sided-error randomness instead of nondeterminism. Our techniques connect the Nondeterministic and Randomized Boolean Hierarchies, and we provide a complete picture of the relationships among complexity classes within and across these two hierarchies. In particular, we prove that the Randomized Boolean Hierarchy does not collapse, and we prove a query-to-communication lifting theorem for all levels of the Nondeterministic Boolean Hierarchy and use it to resolve an open problem stated in the paper by Halstenberg and Reischuk (CCC 1988) which initiated the study of this hierarchy.
more »
« less
This content will become publicly available on June 30, 2025
The role of randomness in quantum state certification with unentangled measurements
We study quantum state certification using unentangled quantum measurements, namely measurements which operate only on one copy of the state at a time. When there is a common source of randomness available and the unentangled measurements are chosen based on this randomness, prior work has shown that copies are necessary and sufficient. We show a separation between algorithms with and without randomness. We develop a lower bound framework for both fixed and randomized measurements that relates the hardness of testing to the well-established Lüders rule. More precisely, we obtain lower bounds for randomized and fixed schemes as a function of the eigenvalues of the Lüders channel which characterizes one possible post-measurement state transformation.
more »
« less
- Award ID(s):
- 1846300
- PAR ID:
- 10541062
- Editor(s):
- Agrawal, Shipra; Roth, Aaron
- Publisher / Repository:
- Proceedings of Machine Learning Research
- Date Published:
- Format(s):
- Medium: X
- Location:
- Edmonton, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The mixedness of one share of a pure bipartite state determines whether the overall state is a separable, unentangled one. Here we consider quantum computational tests of mixedness, and we derive an exact expression of the acceptance probability of such tests as the number of copies of the state becomes larger. We prove that the analytical form of this expression is given by the cycle index polynomial of the symmetric group S k , which is itself related to the Bell polynomials. After doing so, we derive a family of quantum separability tests, each of which is generated by a finite group; for all such algorithms, we show that the acceptance probability is determined by the cycle index polynomial of the group. Finally, we produce and analyse explicit circuit constructions for these tests, showing that the tests corresponding to the symmetric and cyclic groups can be executed with O ( k 2 ) and O ( k log ( k ) ) controlled-SWAP gates, respectively, where k is the number of copies of the state being tested.more » « less
-
The fidelity-based smooth min-relative entropy is a distinguishability measure that has appeared in a variety of contexts in prior work on quantum information, including resource theories like thermodynamics and coherence. Here we provide a comprehensive study of this quantity. First we prove that it satisfies several basic properties, including the data-processing inequality. We also establish connections between the fidelity-based smooth min-relative entropy and other widely used information-theoretic quantities, including smooth min-relative entropy and smooth sandwiched Rényi relative entropy, of which the sandwiched Rényi relative entropy and smooth max-relative entropy are special cases. After that, we use these connections to establish the second-order asymptotics of the fidelity-based smooth min-relative entropy and all smooth sandwiched Rényi relative entropies, finding that the first-order term is the quantum relative entropy and the second-order term involves the quantum relative entropy variance. Utilizing the properties derived, we also show how the fidelity-based smooth min-relative entropy provides one-shot bounds for operational tasks in general resource theories in which the target state is mixed, with a particular example being randomness distillation. The above observations then lead to second-order expansions of the upper bounds on distillable randomness, as well as the precise second-order asymptotics of the distillable randomness of particular classical-quantum states. Finally, we establish semi-definite programs for smooth max-relative entropy and smooth conditional min-entropy, as well as a bilinear program for the fidelity-based smooth min-relative entropy, which we subsequently use to explore the tightness of a bound relating the last to the first.more » « less
-
Abstract The present paper shows how one might model Everettian quantum mechanics using hyperfinitely many worlds. A hyperfinite model allows one to consider idealized measurements of observables with continuous-valued spectra where different outcomes are associated with possibly infinitesimal probabilities. One can also prove hyperfinite formulations of Everett’s limiting relative-frequency and randomness properties, theorems he considered central to his formulation of quantum mechanics. Finally, this model provides an intuitive framework in which to consider no-collapse formulations of quantum mechanics more generally.
-
We consider the rate-limited quantum-to-classical optimal transport in terms of output-constrained rate-distortion coding for discrete quantum measurement systems with limited classical common randomness. The main coding theorem provides the achievable rate region of a lossy measurement source coding for an exact construction of the destination distribution (or the equivalent quantum state) while maintaining a threshold of distortion from the source state according to a generally defined distortion observable. The constraint on the output space fixes the output distribution to an i.i.d. predefined probability mass function. Therefore, this problem can also be viewed as information-constrained optimal transport which finds the optimal cost of transporting the source quantum state to the destination state via an entanglement-breaking channel with limited communication rate and common randomness.more » « less