This content will become publicly available on August 12, 2025
A memristor array has emerged as a potential computing hardware for artificial intelligence (AI). It has an inherent memory effect that allows information storage in the form of easily programmable electrical conductance, making it suitable for efficient data processing without shuttling of data between the processor and memory. To realize its full potential for AI applications, fine-tuning of internal device dynamics is required to implement a network system that employs dynamic functions. Here, we provide a perspective on multicationic entropy-stabilized oxides as a widely tunable materials system for memristor applications. We highlight the potential for efficient data processing in machine learning tasks enabled by the implementation of “task specific” neural networks that derive from this material tunability.
more » « less- Award ID(s):
- 2011839
- NSF-PAR ID:
- 10541066
- Publisher / Repository:
- American Institute of Physics Publishing
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 125
- Issue:
- 7
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Artificial Intelligence (AI) is moving towards the edge. Training an AI model for edge computing on a centralized server increases latency, and the privacy of edge users is jeopardized due to private data transfer through a less secure communication channels. Additionally, existing high-power computing systems are battling with memory and data transfer bottlenecks between the processor and memory. Federated Learning (FL) is a collaborative AI learning paradigm for distributed local devices that operates without transferring local data. Local participant devices share the updated network parameters with the central server instead of sending the original data. The central server updates the global AI model and deploys the model to the local clients. As the local data resides only on the edge, these devices need to be protected from cyberattacks. The Federated Intrusion Detection System (FIDS) could be a viable system to protect edge devices as opposed to a centralized protection system. However, on-device training of the model in resource constrained devices may suffer from excessive power drain, in addition to memory and area overhead. In this work we present a memristor based system for AI training on edge devices. Memristor devices are ideal candidates for processing in memory, as their dynamic resistance properties allow them to perform multiply-add operations in parallel in the analog domain with extreme efficiency. Alternatively, existing CMOS-based PIM systems are typically developed for edge inference based on pretrained weights, and are not equipped for on-chip training. We show the effectiveness of the system, where successful learning and recognition is achieved completely within edge devices. The classification accuracy of the memristor system shows negligible loss when compared a software implementation. To the best of our knowledge, this first demonstration of a memristor based federated learning system. We demonstrate the effectiveness of this system as an intrusion detection platform for edge devices, although given the flexibility of the learning algorithm, it could be used to enhance many types of on board leaning and classification applications.more » « less
-
By mimicking biomimetic synaptic processes, the success of artificial intelligence (AI) has been astounding with various applications such as driving automation, big data analysis, and natural-language processing.[1-4] Due to a large quantity of data transmission between the separated memory unit and the logic unit, the classical computing system with von Neumann architecture consumes excessive energy and has a significant processing delay.[5] Furthermore, the speed difference between the two units also causes extra delay, which is referred to as the memory wall.[6, 7] To keep pace with the rapid growth of AI applications, enhanced hardware systems that particularly feature an energy-efficient and high-speed hardware system need to be secured. The novel neuromorphic computing system, an in-memory architecture with low power consumption, has been suggested as an alternative to the conventional system. Memristors with analog-type resistive switching behavior are a promising candidate for implementing the neuromorphic computing system since the devices can modulate the conductance with cycles that act as synaptic weights to process input signals and store information.[8, 9]
The memristor has sparked tremendous interest due to its simple two-terminal structure, including top electrode (TE), bottom electrode (BE), and an intermediate resistive switching (RS) layer. Many oxide materials, including HfO2, Ta2O5, and IGZO, have extensively been studied as an RS layer of memristors. Silicon dioxide (SiO2) features 3D structural conformity with the conventional CMOS technology and high wafer-scale homogeneity, which has benefited modern microelectronic devices as dielectric and/or passivation layers. Therefore, the use of SiO2as a memristor RS layer for neuromorphic computing is expected to be compatible with current Si technology with minimal processing and material-related complexities.
In this work, we proposed SiO2-based memristor and investigated switching behaviors metallized with different reduction potentials by applying pure Cu and Ag, and their alloys with varied ratios. Heavily doped p-type silicon was chosen as BE in order to exclude any effects of the BE ions on the memristor performance. We previously reported that the selection of TE is crucial for achieving a high memory window and stable switching performance. According to the study which compares the roles of Cu (switching stabilizer) and Ag (large switching window performer) TEs for oxide memristors, we have selected the TE materials and their alloys to engineer the SiO2-based memristor characteristics. The Ag TE leads to a larger memory window of the SiO2memristor, but the device shows relatively large variation and less reliability. On the other hand, the Cu TE device presents uniform gradual switching behavior which is in line with our previous report that Cu can be served as a stabilizer, but with small on/off ratio.[9] These distinct performances with Cu and Ag metallization leads us to utilize a Cu/Ag alloy as the TE. Various compositions of Cu/Ag were examined for the optimization of the memristor TEs. With a Cu/Ag alloying TE with optimized ratio, our SiO2based memristor demonstrates uniform switching behavior and memory window for analog switching applications. Also, it shows ideal potentiation and depression synaptic behavior under the positive/negative spikes (pulse train).
In conclusion, the SiO2memristors with different metallization were established. To tune the property of RS layer, the sputtering conditions of RS were varied. To investigate the influence of TE selections on switching performance of memristor, we integrated Cu, Ag and Cu/Ag alloy as TEs and compared the switch characteristics. Our encouraging results clearly demonstrate that SiO2with Cu/Ag is a promising memristor device with synaptic switching behavior in neuromorphic computing applications.
Acknowledgement This work was supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.
References [1] Young
et al. ,IEEE Computational Intelligence Magazine, vol. 13, no. 3, pp. 55-75, 2018.[2] Hadsell
et al. ,Journal of Field Robotics, vol. 26, no. 2, pp. 120-144, 2009.[3] Najafabadi
et al. ,Journal of Big Data, vol. 2, no. 1, p. 1, 2015.[4] Zhao
et al. ,Applied Physics Reviews, vol. 7, no. 1, 2020.[5] Zidan
et al. ,Nature Electronics, vol. 1, no. 1, pp. 22-29, 2018.[6] Wulf
et al., SIGARCH Comput. Archit. News, vol. 23, no. 1, pp. 20–24, 1995.[7] Wilkes,
SIGARCH Comput. Archit. News, vol. 23, no. 4, pp. 4–6, 1995.[8] Ielmini
et al., Nature Electronics, vol. 1, no. 6, pp. 333-343, 2018.[9] Chang
et al., Nano Letters, vol. 10, no. 4, pp. 1297-1301, 2010.[10] Qin
et al. , Physica Status Solidi (RRL) - Rapid Research Letters, pssr.202200075R1, In press, 2022. -
Abstract As machine vision technology generates large amounts of data from sensors, it requires efficient computational systems for visual cognitive processing. Recently, in-sensor computing systems have emerged as a potential solution for reducing unnecessary data transfer and realizing fast and energy-efficient visual cognitive processing. However, they still lack the capability to process stored images directly within the sensor. Here, we demonstrate a heterogeneously integrated 1-photodiode and 1 memristor (1P-1R) crossbar for in-sensor visual cognitive processing, emulating a mammalian image encoding process to extract features from the input images. Unlike other neuromorphic vision processes, the trained weight values are applied as an input voltage to the image-saved crossbar array instead of storing the weight value in the memristors, realizing the in-sensor computing paradigm. We believe the heterogeneously integrated in-sensor computing platform provides an advanced architecture for real-time and data-intensive machine-vision applications via bio-stimulus domain reduction.
-
Progress in hardware and algorithms for artificial intelligence (AI) has ushered in large machine learning models and various applications impacting our everyday lives. However, today's AI, mainly artificial neural networks, still cannot compete with human brains because of two major issues: the high energy consumption of the hardware running AI models and the lack of ability to generalize knowledge and self-adapt to changes. Neuromorphic systems built upon emerging devices, for instance, memristors, provide a promising path to address these issues. Although innovative memristor devices and circuit designs have been proposed for neuromorphic computing and applied to different proof-of-concept applications, there is still a long way to go to build large-scale low-power memristor-based neuromorphic systems that can bridge the gap between AI and biological brains. This Perspective summarizes the progress and challenges from memristor devices to neuromorphic systems and proposes possible directions for neuromorphic system implementation based on memristive devices.more » « less
-
null (Ed.)Processing-in-memory (PIM) has raised as a viable solution for the memory wall crisis and has attracted great interest in accelerating computationally intensive AI applications ranging from filtering to complex neural networks. In this paper, we try to take advantage of both PIM and the residue number system (RNS) as an alternative for the conventional binary number representation to accelerate multiplication-and-accumulations (MACs), primary operations of target applications. The PIM architecture utilizes the maximum internal bandwidth of memory chips to realize a local and parallel computation to eliminates the off-chip data transfer. Moreover, RNS limits inter-digit carry propagation by performing arithmetic operations on small residues independently and in parallel. Thus, we develop a PIM-RNS, entitled PRIMS, and analyze the potential of intertwining PIM architecture with the inherent parallelism of the RNS arithmetic to delineate the opportunities and challenges. To this end, we build a comprehensive device-to-architecture evaluation framework to quantitatively study this problem considering the impact of PIM technology for a well-known three-moduli set as a case study.more » « less