skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spin‐s$s$ Dicke States and Their Preparation
Abstract The notion of spin‐ Dicke states is introduced, which are higher‐spin generalizations of usual (spin‐1/2) Dicke states. These multi‐qudit states can be expressed as superpositions of qudit Dicke states. They satisfy a recursion formula, which is used to formulate an efficient quantum circuit for their preparation, whose size scales as , where is the number of qudits and is the number of times the total spin‐lowering operator is applied to the highest‐weight state. The algorithm is deterministic and does not require ancillary qudits.  more » « less
Award ID(s):
2310594
PAR ID:
10541143
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Quantum Technologies
Volume:
7
Issue:
12
ISSN:
2511-9044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Qudit Dicke states are higher-dimensional analogues of an important class of highly-entangled completely symmetric quantum states known as (qubit) Dicke states. A circuit for preparing arbitrary qudit Dicke states deterministically is formulated. An explicit decomposition of the circuit in terms of elementary gates is presented, and is implemented in cirq for the qubit and qutrit cases. 
    more » « less
  2. Abstract Dicke states are completely symmetric states of multiple qubits (2-level systems), and qudit Dicke states are theird-level generalization. We define hereq-deformed qudit Dicke states using the quantum algebra s u q ( d ) . We show that these states can be compactly expressed as a weighted sum over permutations withq-factors involving the so-called inversion number, an important permutation statistic in Combinatorics. We use this result to compute the bipartite entanglement entropy of these states. We also discuss the preparation of these states on a quantum computer, and show that introducing aq-dependence does not change the circuit gate count. 
    more » « less
  3. Quantum key distribution offers a promising avenue for establishing secure communication networks. However, its performance is significantly hampered by the conventional two-level information carriers (i.e., qubits) due to their limited information capacity and noise resilience. A fundamental approach to overcoming these limitations involves the adoption of high-dimensional qudits. Practical qudit platforms require robust propagation, outstanding controllability, and extreme compactness, to which integrated photonics provides a promising solution. Here, we achieved, for the first time, microlaser-enabled high-dimensional quantum communication through leveraging spin-orbit photon qudits, where the dynamical generation and manipulation of these multi-degrees-of-freedom complex quantum state are realized by a non-Hermitian-physics-driven integrated microlaser quantum transmitter. Such a microlaser photon manipulation, as a novel route towards high-dimensional quantum state generation, promises high energy efficiency, along with fast, compact, and precise qudit state reconfigurability. The four spin-orbit eigenstates emitted by the microlaser possess the same spatial-temporal structures, ensuring homogeneity between all qudit states used for key distribution, which effectively eliminates propagation dephasing and walk-off problems, thereby delivering the high-dimensional spin-orbit secret key generation to construct a robust quantum link. The demonstrated long-term system stability showcases the practical potential of the microlaser quantum transmitter, providing a critical step towards compact, high-information-capacity quantum communication networks. Published by the American Physical Society2025 
    more » « less
  4. Abstract The Phase Estimation Algorithm (PEA) is an important quantum algorithm used independently or as a key subroutine in other quantum algorithms. Currently most implementations of the PEA are based on qubits, where the computational units in the quantum circuits are 2D states. Performing quantum computing tasks with higher dimensional states—qudits —has been proposed, yet a qudit‐based PEA has not been realized. Using qudits can reduce the resources needed for achieving a given precision or success probability. Compared to other quantum computing hardware, photonic systems have the advantage of being resilient to noise, but the probabilistic nature of photon–photon interaction makes it difficult to realize two‐photon controlled gates that are necessary components in many quantum algorithms. In this work, an experimental realization of a qudit‐based PEA on a photonic platform is reported, utilizing the high dimensionality in time and frequency degrees of freedom (DoFs) in a single photon. The controlled‐unitary gates can be realized in a deterministic fashion, as the control and target registers are now represented by two DoFs in a single photon. This first implementation of a qudit PEA, on any platform, successfully retrieves any arbitrary phase with one ternary digit of precision. 
    more » « less
  5. Abstract The hope for a futuristic global quantum internet that provides robust and high-capacity quantum information transfer lies largely on qudits, the fundamental quantum information carriers prepared in high-dimensional superposition states. However, preparing and manipulating N-dimensional flying qudits as well as subsequently establishing their entanglement are still challenging tasks, which require precise and simultaneous maneuver of 2 (N-1) parameters across multiple degrees of freedom. Here, using an integrated approach, we explore the synergy from two degrees of freedom of light, spatial mode and polarization, to generate, encode, and manipulate flying structured photons and their formed qudits in a four-dimensional Hilbert space with high quantum fidelity, intrinsically enabling enhanced noise resilience and higher quantum data rates. The four eigen spin–orbit modes of our qudits possess identical spatial–temporal characteristics in terms of intensity distribution and group velocity, thereby preserving long-haul coherence within the entirety of the quantum data transmission link. Judiciously leveraging the bi-photon entanglement, which is well preserved in the integrated manipulation process, we present versatile spin–orbit cluster states in an extensive dimensional Hilbert space. Such cluster states hold the promise for quantum error correction which can further bolster the channel robustness in long-range quantum communication. 
    more » « less