Processing social information from faces is difficult for individuals with autism spectrum disorder (ASD). However, it remains unclear whether individuals with ASD make high-level social trait judgments from faces in the same way as neurotypical individuals. Here, we comprehensively addressed this question using naturalistic face images and representatively sampled traits. Despite similar underlying dimensional structures across traits, online adult participants with self-reported ASD showed different judgments and reduced specificity within each trait compared with neurotypical individuals. Deep neural networks revealed that these group differences were driven by specific types of faces and differential utilization of features within a face. Our results were replicated in well-characterized in-lab participants and partially generalized to more controlled face images (a preregistered study). By investigating social trait judgments in a broader population, including individuals with neurodevelopmental variations, we found important theoretical implications for the fundamental dimensions, variations, and potential behavioral consequences of social cognition.
This content will become publicly available on May 1, 2025
Individuals with autism spectrum disorder (ASD) experience pervasive difficulties in processing social information from faces. However, the behavioral and neural mechanisms underlying social trait judgments of faces in ASD remain largely unclear. Here, we comprehensively addressed this question by employing functional neuroimaging and parametrically generated faces that vary in facial trustworthiness and dominance. Behaviorally, participants with ASD exhibited reduced specificity but increased inter-rater variability in social trait judgments. Neurally, participants with ASD showed hypo-activation across broad face-processing areas. Multivariate analysis based on trial-by-trial face responses could discriminate participant groups in the majority of the face-processing areas. Encoding social traits in ASD engaged vastly different face-processing areas compared to controls, and encoding different social traits engaged different brain areas. Interestingly, the idiosyncratic brain areas encoding social traits in ASD were still flexible and context-dependent, similar to neurotypicals. Additionally, participants with ASD also showed an altered encoding of facial saliency features in the eyes and mouth. Together, our results provide a comprehensive understanding of the neural mechanisms underlying social trait judgments in ASD.
more » « less- Award ID(s):
- 2401748
- NSF-PAR ID:
- 10541228
- Publisher / Repository:
- Oxford
- Date Published:
- Journal Name:
- Cerebral Cortex
- Volume:
- 34
- Issue:
- 13
- ISSN:
- 1047-3211
- Page Range / eLocation ID:
- 172 to 186
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Autism spectrum disorder (ASD) is characterized by difficulties in social processes, interactions, and communication. Yet, the neurocognitive bases underlying these difficulties are unclear. Here, we triangulated the ‘trans-diagnostic’ approach to personality, social trait judgments of faces, and neurophysiology to investigate (1) the relative position of autistic traits in a comprehensive social-affective personality space, and (2) the distinct associations between the social-affective personality dimensions and social trait judgment from faces in individuals with ASD and neurotypical individuals. We collected personality and facial judgment data from a large sample of online participants (
N = 89 self-identified ASD;N = 307 neurotypical controls). Factor analysis with 33 subscales of 10 social-affective personality questionnaires identified a 4-dimensional personality space. This analysis revealed that ASD and control participants did not differ significantly along the personality dimensions of empathy and prosociality, antisociality, or social agreeableness. However, the ASD participants exhibited a weaker association between prosocial personality dimensions and judgments of facial trustworthiness and warmth than the control participants. Neurophysiological data also indicated that ASD participants had a weaker association with neuronal representations for trustworthiness and warmth from faces. These results suggest that the atypical association between social-affective personality and social trait judgment from faces may contribute to the social and affective difficulties associated with ASD. -
Abstract Faces are salient social stimuli that attract a stereotypical pattern of eye movement. The human amygdala and hippocampus are involved in various aspects of face processing; however, it remains unclear how they encode the content of fixations when viewing faces. To answer this question, we employed single-neuron recordings with simultaneous eye tracking when participants viewed natural face stimuli. We found a class of neurons in the human amygdala and hippocampus that encoded salient facial features such as the eyes and mouth. With a control experiment using non-face stimuli, we further showed that feature selectivity was specific to faces. We also found another population of neurons that differentiated saccades to the eyes vs. the mouth. Population decoding confirmed our results and further revealed the temporal dynamics of face feature coding. Interestingly, we found that the amygdala and hippocampus played different roles in encoding facial features. Lastly, we revealed two functional roles of feature-selective neurons: 1) they encoded the salient region for face recognition, and 2) they were related to perceived social trait judgments. Together, our results link eye movement with neural face processing and provide important mechanistic insights for human face perception.
-
null (Ed.)Abstract An important question in human face perception research is to understand whether the neural representation of faces is dynamically modulated by context. In particular, although there is a plethora of neuroimaging literature that has probed the neural representation of faces, few studies have investigated what low-level structural and textural facial features parametrically drive neural responses to faces and whether the representation of these features is modulated by the task. To answer these questions, we employed 2 task instructions when participants viewed the same faces. We first identified brain regions that parametrically encoded high-level social traits such as perceived facial trustworthiness and dominance, and we showed that these brain regions were modulated by task instructions. We then employed a data-driven computational face model with parametrically generated faces and identified brain regions that encoded low-level variation in the faces (shape and skin texture) that drove neural responses. We further analyzed the evolution of the neural feature vectors along the visual processing stream and visualized and explained these feature vectors. Together, our results showed a flexible neural representation of faces for both low-level features and high-level social traits in the human brain.more » « less
-
When seeing a face, people form judgments of perceptually ambiguous social categories (PASCs), for example, gun-owners, gay people, or alcoholics. Previous research has assumed that PASC judgments arise from the statistical learning of facial features in social encounters. We propose, instead, that perceivers associate facial features with traits (e.g., extroverted) and then infer PASC membership via learned stereotype associations with those traits. Across three studies, we show that when any PASC is more stereotypically associated with a trait (e.g., alcoholics = extroverted), perceivers are more likely to infer PASC membership from faces conveying that trait (Study 1). Furthermore, we demonstrate that individual differences in trait–PASC stereotypes predict face-based judgments of PASC membership (Study 2) and have a causal role in these judgments (Study 3). Together, our findings imply that people can form any number of PASC judgments from facial appearance alone by drawing on their learned social–conceptual associations.