skip to main content


This content will become publicly available on May 1, 2025

Title: Prediction without preclusions: Recourse verification with reachable sets
Machine learning models are often used to decide who receives a loan, a job interview, or a public benefit. Models in such settings use features without considering their actionability. As a result, they can assign predictions that are fixed – meaning that individuals who are denied loans and interviews are, in fact, precluded from access to credit and employment. In this work, we introduce a procedure called recourse verification to test if a model assigns fixed predictions to its decision subjects. We propose a model-agnostic approach for recourse verification with reachable sets – i.e., the set of all points that a person can reach through their actions in feature space. We develop methods to construct reachable sets for discrete feature spaces, which can certify the responsiveness of any model by simply querying its predictions. We conduct a comprehensive empirical study on the infeasibility of recourse on datasets from consumer finance. Our results highlight how models can inadvertently preclude access by assigning fixed predictions and underscore the need to account for actionability in model development.  more » « less
Award ID(s):
2313105
PAR ID:
10541256
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ICLR 2024
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. N. Matni, M. Morari (Ed.)
    This paper proposes a computationally efficient framework, based on interval analysis, for rigorous verification of nonlinear continuous-time dynamical systems with neural network controllers. Given a neural network, we use an existing verification algorithm to construct inclusion functions for its input-output behavior. Inspired by mixed monotone theory, we embed the closed-loop dynamics into a larger system using an inclusion function of the neural network and a decomposition function of the open-loop system. This embedding provides a scalable approach for safety analysis of the neural control loop while preserving the nonlinear structure of the system. We show that one can efficiently compute hyper-rectangular over-approximations of the reachable sets using a single trajectory of the embedding system. We design an algorithm to leverage this computational advantage through partitioning strategies, improving our reachable set estimates while balancing its runtime with tunable parameters. We demonstrate the performance of this algorithm through two case studies. First, we demonstrate this method’s strength in complex nonlinear environments. Then, we show that our approach matches the performance of the state-of-the art verification algorithm for linear discretized systems. 
    more » « less
  2. Zonotopes are widely used for over-approximating forward reachable sets of uncertain linear systems for verification purposes. In this paper, we use zonotopes to achieve more scalable algorithms that under-approximate backward reachable sets of uncertain linear systems for control design. The main difference is that the backward reachability analysis is a twoplayer game and involves Minkowski difference operations, but zonotopes are not closed under such operations. We underapproximate this Minkowski difference with a zonotope, which can be obtained by solving a linear optimization problem. We further develop an efficient zonotope order reduction technique to bound the complexity of the obtained zonotopic underapproximations. The proposed approach is evaluated against existing approaches using randomly generated instances and illustrated with several examples. 
    more » « less
  3. There has been an increasing interest in using neural networks in closed-loop control systems to improve performance and reduce computational costs for on-line implementation. However, providing safety and stability guarantees for these systems is challenging due to the nonlinear and compositional structure of neural networks. In this paper, we propose a novel forward reachability analysis method for the safety verification of linear time-varying systems with neural networks in feedback interconnection. Our technical approach relies on abstracting the nonlinear activation functions by quadratic constraints, which leads to an outer-approximation of forward reachable sets of the closed-loop system. We show that we can compute these approximate reachable sets using semidefinite programming. We illustrate our method in a quadrotor example, in which we first approximate a nonlinear model predictive controller via a deep neural network and then apply our analysis tool to certify finite-time reachability and constraint satisfaction of the closed-loop system. 
    more » « less
  4. There is an emerging interest in generating robust algorithmic recourse that would remain valid if the model is updated or changed even slightly. Towards finding robust algorithmic recourse (or counterfactual explanations), existing literature often assumes that the original model m and the new model M are bounded in the parameter space, i.e., ||Params(M)−Params(m)||<Δ. However, models can often change significantly in the parameter space with little to no change in their predictions or accuracy on the given dataset. In this work, we introduce a mathematical abstraction termed naturally-occurring model change, which allows for arbitrary changes in the parameter space such that the change in predictions on points that lie on the data manifold is limited. Next, we propose a measure – that we call Stability – to quantify the robustness of counterfactuals to potential model changes for differentiable models, e.g., neural networks. Our main contribution is to show that counterfactuals with sufficiently high value of Stability as defined by our measure will remain valid after potential “naturally-occurring” model changes with high probability (leveraging concentration bounds for Lipschitz function of independent Gaussians). Since our quantification depends on the local Lipschitz constant around a data point which is not always available, we also examine estimators of our proposed measure and derive a fundamental lower bound on the sample size required to have a precise estimate. We explore methods of using stability measures to generate robust counterfactuals that are close, realistic, and remain valid after potential model changes. This work also has interesting connections with model multiplicity, also known as the Rashomon effect. 
    more » « less
  5. Counterfactual explanations are emerging as an attractive option for providing recourse to individuals adversely impacted by algorithmic decisions. As they are deployed in critical applications (e.g. law enforcement, financial lending), it becomes important to ensure that we clearly understand the vulnerabilties of these methods and find ways to address them. However, there is little understanding of the vulnerabilities and shortcomings of counterfactual explanations. In this work, we introduce the first framework that describes the vulnerabilities of counterfactual explanations and shows how they can be manipulated. More specifically, we show counterfactual explanations may converge to drastically different counterfactuals under a small perturbation indicating they are not robust. Leveraging this insight, we introduce a novel objective to train seemingly fair models where counterfactual explanations find much lower cost recourse under a slight perturbation. We describe how these models can unfairly provide low-cost recourse for specific subgroups in the data while appearing fair to auditors. We perform experiments on loan and violent crime prediction data sets where certain subgroups achieve up to 20x lower cost recourse under the perturbation. These results raise concerns regarding the dependability of current counterfactual explanation techniques, which we hope will inspire investigations in robust counterfactual explanations. 
    more » « less