skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Characterizing the Atmospheric Boundary Layer for Offshore Wind Energy Using Synthetic Aperture Radar Imagery
ABSTRACT

Measuring boundary layer stratification, wind shear, and turbulence remains challenging for wind resource assessment. In particular, larger eddy scales have the greatest impact on turbine load fluctuations, and there are few in situ methods to observe them adequately. Satellite remote sensing using synthetic aperture radar (SAR) is an alternative approach. In this study, eddy‐related signatures in 704 high‐resolution images are related to stratification through a bulk Richardson number () measured by a buoy near Martha's Vineyard, the US epicenter of offshore wind. Variations in SAR‐observed atmospheric boundary layer eddies, or lack of them, correspond to specific regimes. Accounting for strong vertical wind shear, typically under stable stratification, is critical for energy production and turbine loads, and SAR directly identifies these conditions by the absence of energetic eddies. SAR also provides a regional climatology of atmospheric stratification for offshore wind assessment, complementing other observations, and with potential application worldwide.

 
more » « less
NSF-PAR ID:
10541356
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Wind Energy
ISSN:
1095-4244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Roll vortices are a series of large-scale turbulent eddies that nearly align with the mean wind direction and prevail in the hurricane boundary layer. In this study, the one-way nested WRF-LES model simulation results from Li et al. (J Atmos Sci 78(6):1847–1867,https://doi.org/10.1175/JAS-D-20-0270.1, 2021) are used to examine the structure and generation mechanism of roll vortices and associated coherent turbulence in the hurricane boundary layer during the landfall of Hurricane Harvey from 00 UTC 25 to 18 UTC 27 August 2017. Results indicate that roll vortices prevail in the hurricane boundary layer. The intense roll vortices and associated large turbulent eddies above them (at a height of ~ 200 to 3000 m) accumulate within a hurricane radius of 20–40 km. Their intensity is proportional to hurricane intensity during the simulation period. Before and during hurricane landfall, strong inflow convergence leads to horizontal advection of roll vortices throughout the entire hurricane boundary layer. Combined with the strong wind shear, the strongest roll vortices and associated large turbulent eddies are generated near the eyewall with suitable thermodynamic (Richardson number at around − 0.2 to 0.2) and dynamic conditions (strong negative inflow wind shear). After landfall, the decayed inflow weakens the inflow convergence and quickly reduces the strong roll vortices and associated large turbulent eddies. Diagnosis of vertical turbulent kinetic energy indicates that atmospheric pressure perturbation, caused by horizontal convergence, transfers the horizontal component of turbulence to the vertical component with a mean wavelength of about 1 km. The buoyancy term is weak and negative, and the large turbulent eddies are suppressed.

     
    more » « less
  2. Abstract The U.S. offshore wind industry can expect higher costs due to the lack of domestic experience with offshore wind technology. A key factor of the capital expenditure related to offshore wind farms is the cost of the support structures of offshore wind turbines. Therefore, improvements to the reliability of support structures under ultimate and fatigue loading conditions will help reduce the levelized cost of energy of offshore wind. This study presents a framework that accounts for the wind directionality by assuming a distinct and independent wind speed distribution per each wind direction and investigates its effect on the fatigue life of offshore wind turbine support structures. A monopile support structure in a potential wind site close to a National Oceanic and Atmospheric Administration buoy in the north-eastern US waters is used in this study. Fatigue damage assessment is performed for the normal operational condition of wind turbine, and the results are presented considering both cathodic protection and free corrosion conditions at the mudline level of the monopile. The location and extent of the predicted fatigue damages are found to vary due to accounting for the wind directionality. 
    more » « less
  3. Large atmospheric boundary layer fluctuations and smaller turbine-scale vorticity dynamics are separately hypothesized to initiate the wind turbine wake meandering phenomenon, a coherent, dynamic, turbine-scale oscillation of the far wake. Triadic interactions, the mechanism of energy transfers between scales, manifest as triples of wavenumbers or frequencies and can be characterized through bispectral analyses. The bispectrum, which correlates the two frequencies to their sum, is calculated by two recently developed multi-dimensional modal decomposition methods: scale-specific energy transfer method and bispectral mode decomposition. Large-eddy simulation of a utility-scale wind turbine in an atmospheric boundary layer with a broad range of large length-scales is used to acquire instantaneous velocity snapshots. The bispectrum from both methods identifies prominent upwind and wake meandering interactions that create a broad range of energy scales including the wake meandering scale. The coherent kinetic energy associated with the interactions shows strong correlation between upwind scales and wake meandering. 
    more » « less
  4. Abstract

    Flow modifications induced by wind turbine rotors on the incoming atmospheric boundary layer (ABL), such as blockage and speedups, can be important factors affecting the power performance and annual energy production (AEP) of a wind farm. Further, these rotor‐induced effects on the incoming ABL can vary significantly with the characteristics of the incoming wind, such as wind shear, veer, and turbulence intensity, and turbine operative conditions. To better characterize the complex flow physics underpinning the interaction between turbine rotors and the ABL, a field campaign was performed by deploying profiling wind LiDARs both before and after the construction of an onshore wind turbine array. Considering that the magnitude of these rotor‐induced flow modifications represents a small percentage of the incoming wind speed ( ), high accuracy needs to be achieved for the analysis of the experimental data and generation of flow predictions. Further, flow distortions induced by the site topography and effects of the local climatology need to be quantified and differentiated from those induced by wind turbine rotors. To this aim, a suite of statistical and machine learning models, such as k‐means cluster analysis coupled with random forest predictions, are used to quantify and predict flow modifications for different wind and atmospheric conditions. The experimental results show that wind velocity reductions of up to 3% can be observed at an upstream distance of 1.5 rotor diameter from the leading wind turbine rotor, with more significant effects occurring for larger positive wind shear. For more complex wind conditions, such as negative shear and low‐level jet, the rotor induction becomes highly complex entailing either velocity reductions (down to 9%) below hub height and velocity increases (up to 3%) above hub height. The effects of the rotor induction on the incoming wind velocity field seem to be already roughly negligible at an upstream distance of three rotor diameters. The results from this field experiment will inform models to simulate wind‐turbine and wind‐farm operations with improved accuracy for flow predictions in the proximity of the rotor area, which will be instrumental for more accurate quantification of wind farm blockage and relative effects on AEP.

     
    more » « less
  5. null (Ed.)
    Oceanic fronts associated with strong western boundary current extensions vent a vast amount of heat into the atmosphere, anchoring mid-latitude storm tracks and facilitating ocean carbon sequestration. However, it remains unclear how the surface heat reservoir is replenished by ocean processes to sustain the atmospheric heat uptake. Using high-resolution climate simulations, we find that the vertical heat transport by ocean mesoscale eddies acts as an important heat supplier to the surface ocean in frontal regions. This vertical eddy heat transport is not accounted for by the prevailing inviscid and adiabatic ocean dynamical theories such as baroclinic instability and frontogenesis but is tightly related to the atmospheric forcing. Strong surface cooling associated with intense winds in winter promotes turbulent mixing in the mixed layer, destructing the vertical shear of mesoscale eddies. The restoring of vertical shear induces an ageostrophic secondary circulation transporting heat from the subsurface to surface ocean. 
    more » « less