skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modulation of Fe–Fe distance and spin in diiron complexes using tetradentate ligands with different flanking donors
Here we report the synthesis and characterization of diiron complexes containing triaryl N4and N2S2ligands derived fromo-phenylenediamine.  more » « less
Award ID(s):
2101002
PAR ID:
10541395
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Chemical Communications
Volume:
60
Issue:
64
ISSN:
1359-7345
Page Range / eLocation ID:
8399 to 8402
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Iron nitrides are possible constituents of the cores of Earth and other terrestrial planets. Pressure‐induced magnetic changes in iron nitrides and effects on compressibility remain poorly understood. Here we report synchrotron X‐ray emission spectroscopy (XES) and X‐ray diffraction (XRD) results for ε‐Fe7N3and γ′‐Fe4N up to 60 GPa at 300 K. The XES spectra reveal completion of high‐ to low‐spin transition in ε‐Fe7N3and γ′‐Fe4N at 43 and 34 GPa, respectively. The completion of the spin transition induces stiffening in bulk modulus of ε‐Fe7N3by 22% at ~40 GPa, but has no resolvable effect on the compression behavior of γ′‐Fe4N. Fitting pressure‐volume data to the Birch‐Murnaghan equation of state yieldsV0 = 83.29 ± 0.03 (Å3),K0 = 232 ± 9 GPa,K0′ = 4.1 ± 0.5 for nonmagnetic ε‐Fe7N3above the spin transition completion pressure, andV0 = 54.82 ± 0.02 (Å3),K0 = 152 ± 2 GPa,K0′ = 4.0 ± 0.1 for γ′‐Fe4N over the studied pressure range. By reexamining evidence for spin transition and effects on compressibility of other candidate components of terrestrial planet cores, Fe3S, Fe3P, Fe7C3, and Fe3C based on previous XES and XRD measurements, we located the completion of high‐ to low‐spin transition at ~67, 38, 50, and 30 GPa at 300 K, respectively. The completion of spin transitions of Fe3S, Fe3P, and Fe3C induces elastic stiffening, whereas that of Fe7C3induces elastic softening. Changes in compressibility at completion of spin transitions in iron‐light element alloys may influence the properties of Earth's and planetary cores. 
    more » « less
  2. Summary Biological nitrogen fixation is catalyzed by the molybdenum (Mo), vanadium (V) and iron (Fe)‐only nitrogenase metalloenzymes. Studies with purified enzymes have found that the ‘alternative’ V‐ and Fe‐nitrogenases generally reduce N2more slowly and produce more byproduct H2than the Mo‐nitrogenase, leading to an assumption that their usage results in slower growth. Here we show that, in the metabolically versatile photoheterotrophRhodopseudomonas palustris, the type of carbon substrate influences the relative rates of diazotrophic growth based on different nitrogenase isoforms. The V‐nitrogenase supports growth as fast as the Mo‐nitrogenase on acetate but not on the more oxidized substrate succinate. Our data suggest that this is due to insufficient electron flux to the V‐nitrogenase isoform on succinate compared with acetate. Despite slightly faster growth based on the V‐nitrogenase on acetate, the wild‐type strain uses exclusively the Mo‐nitrogenase on both carbon substrates. Notably, the differences in H2:N2stoichiometry by alternative nitrogenases (~1.5 for V‐nitrogenase, ~4–7 for Fe‐nitrogenase) and Mo‐nitrogenase (~1) measured here are lower than priorin vitroestimates. These results indicate that the metabolic costs of V‐based nitrogen fixation could be less significant for growth than previously assumed, helping explain why alternative nitrogenase genes persist in diverse diazotroph lineages and are broadly distributed in the environment. 
    more » « less
  3. Context. Carbon monoxide (CO) is a poor tracer of H2in the diffuse interstellar medium (ISM), where most of the carbon is not incorporated into CO molecules, unlike the situation at higher extinctions. Aims. We present a novel, indirect method for constraining H2column densities (NH2) without employing CO observations. We show that previously recognized nonlinearities in the relation between the extinction,AV(H2), derived from dust emission and the H Icolumn density (NH I) are due to the presence of molecular gas. Methods. We employed archival (NH2) data, obtained from the UV spectra of stars, and calculatedAV(H2) toward these sight lines using 3D extinction maps. The following relation fits the data: logNH2= 1.38742 (logAV(H2))3− 0.05359 (logAV(H2))2+ 0.25722 logAV(H2) + 20.67191. This relation is useful for constrainingNH2in the diffuse ISM as it requires onlyNH Iand dust extinction data, which are both easily accessible. In 95% of the cases, the estimates produced by the fitted equation have deviations of less than a factor of 3.5. We constructed aNH2map of our Galaxy and compared it to the CO integrated intensity (WCO) distribution. Results. We find that the average ratio (XCO) betweenNH2andWCOis approximately equal to 2 × 1020cm−2(K km s−1)−1, consistent with previous estimates. However, we find that theXCOfactor varies by orders of magnitude on arcminute scales between the outer and the central portions of molecular clouds. For regions withNH2≳ 1020cm−2, we estimate that the average H2fractional abundance,fH2= 2NH2/(2NH2+NH I), is 0.25. Multiple (distinct) largely atomic clouds are likely found along high-extinction sightlines (AV≥ 1 mag), hence limitingfH2in these directions. Conclusions. More than 50% of the lines of sight withNH2≥ 1020cm−2are untraceable by CO with aJ= 1−0 sensitivity limitWCO= 1 K km s−1
    more » « less
  4. Abstract Simple synthetic routes to regioselectively deuterated tris[2‐(dimethylamino)ethyl]amine (Me6TREN) variants are described. Imine formation with formaldehyde‐d2from tris(2‐aminoethyl)amine (TREN) and subsequent reductions with NaBD4afforded N[CH2CH2N(CD3)2]3ord18‐Me6TREN in 79 % yield. A trisubstitution protocol from 2‐bromo‐N,N‐dimethylacetamide and ammonium carbonate and subsequent reduction of the N(CH2CONMe2)3intermediate by lithium aluminum deuteride has afforded N[CH2CD2N(CH3)2]3or (d6‐arm)‐Me6TREN in three steps and 52 % overall yield. A similar protocol from 2‐bromo‐N,N‐dimethyl‐d2‐acetamide, obtained in two steps fromd4‐acetic acid, with reduction of the N(CD2CONMe2)3intermediate by lithium aluminum hydride has afforded N[CD2CH2N(CH3)2]3or (d6‐cap)‐Me6TREN in four steps and 13 % overall yield from CD3COOD. 
    more » « less
  5. Abstract Nitrous oxide (N2O) is a climate-active gas with emissions predicted to increase due to agricultural intensification. Microbial reduction of N2O to dinitrogen (N2) is the major consumption process but microbial N2O reduction under acidic conditions is considered negligible, albeit strongly acidic soils harbornosZgenes encoding N2O reductase. Here, we study a co-culture derived from acidic tropical forest soil that reduces N2O at pH 4.5. The co-culture exhibits bimodal growth with aSerratiasp. fermenting pyruvate followed by hydrogenotrophic N2O reduction by aDesulfosporosinussp. Integrated omics and physiological characterization revealed interspecies nutritional interactions, with the pyruvate fermentingSerratiasp. supplying amino acids as essential growth factors to the N2O-reducingDesulfosporosinussp. Thus, we demonstrate growth-linked N2O reduction between pH 4.5 and 6, highlighting microbial N2O reduction potential in acidic soils. 
    more » « less