skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prebiotic chiral transfer from self-aminoacylating ribozymes may favor either handedness
Abstract Modern life is essentially homochiral, containing D-sugars in nucleic acid backbones and L-amino acids in proteins. Since coded proteins are theorized to have developed from a prebiotic RNA World, the homochirality of L-amino acids observed in all known life presumably resulted from chiral transfer from a homochiral D-RNA World. This transfer would have been mediated by aminoacyl-RNAs defining the genetic code. Previous work on aminoacyl transfer using tRNA mimics has suggested that aminoacylation using D-RNA may be inherently biased toward reactivity with L-amino acids, implying a deterministic path from a D-RNA World to L-proteins. Using a model system of self-aminoacylating D-ribozymes and epimerizable activated amino acid analogs, we test the chiral selectivity of 15 ribozymes derived from an exhaustive search of sequence space. All of the ribozymes exhibit detectable selectivity, and a substantial fraction react preferentially to produce the D-enantiomer of the product. Furthermore, chiral preference is conserved within sequence families. These results are consistent with the transfer of chiral information from RNA to proteins but do not support an intrinsic bias of D-RNA for L-amino acids. Different aminoacylation structures result in different directions of chiral selectivity, such that L-proteins need not emerge from a D-RNA World.  more » « less
Award ID(s):
1935372 2318736
PAR ID:
10541518
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The absence of orthogonal aminoacyl-transfer RNA (tRNA) synthetases that accept non-l-α-amino acids is a primary bottleneck hindering the in vivo translation of sequence-defined hetero-oligomers and biomaterials. Here we report that pyrrolysyl-tRNA synthetase (PylRS) and certain PylRS variants accept α-hydroxy, α-thio andN-formyl-l-α-amino acids, as well as α-carboxy acid monomers that are precursors to polyketide natural products. These monomers are accommodated and accepted by the translation apparatus in vitro; those with reactive nucleophiles are incorporated into proteins in vivo. High-resolution structural analysis of the complex formed between one PylRS enzyme and am-substituted 2-benzylmalonic acid derivative revealed an active site that discriminates prochiral carboxylates and accommodates the large size and distinct electrostatics of an α-carboxy substituent. This work emphasizes the potential of PylRS-derived enzymes for acylating tRNA with monomers whose α-substituent diverges substantially from the α-amine of proteinogenic amino acids. These enzymes or derivatives thereof could synergize with natural or evolved ribosomes and/or translation factors to generate diverse sequence-defined non-protein heteropolymers. 
    more » « less
  2. null (Ed.)
    One integral step in the transition from a nucleic acid encoded-genome to functional proteins is the aminoacylation of tRNA molecules. To perform this activity, aminoacyl-tRNA synthetases (aaRSs) activate free amino acids in the cell forming an aminoacyl-adenylate before transferring the amino acid on to its cognate tRNA. These newly formed aminoacyl-tRNA (aa-tRNA) can then be used by the ribosome during mRNA decoding. In Escherichia coli, there are twenty aaRSs encoded in the genome, each of which corresponds to one of the twenty proteinogenic amino acids used in translation. Given the shared chemicophysical properties of many amino acids, aaRSs have evolved mechanisms to prevent erroneous aa-tRNA formation with non-cognate amino acid substrates. Of particular interest is the post-transfer proofreading activity of alanyl-tRNA synthetase (AlaRS) which prevents the accumulation of Ser-tRNAAla and Gly-tRNAAla in the cell. We have previously shown that defects in AlaRS proofreading of Ser-tRNAAla lead to global dysregulation of the E. coli proteome, subsequently causing defects in growth, motility, and antibiotic sensitivity. Here we report second-site AlaRS suppressor mutations that alleviate the aforementioned phenotypes, revealing previously uncharacterized residues within the AlaRS proofreading domain that function in quality control. 
    more » « less
  3. Abstract We describe a new assay that reports directly on the acylation state of a user-chosen transfer RNA (tRNA) in cells. We call this assay 3-Prime Adenosine-Retaining Aminoacyl–tRNA Isolation (PARTI). It relies on high-resolution mass spectrometry identification of the acyl-adenosine species released upon RNase A cleavage of isolated cellular tRNA. Here we develop the PARTI workflow and apply it to understand three recent observations related to the cellular incorporation of non-α-amino acid monomers into protein: (i) the origins of the apparent selectivity of translation with respect to β2-hydroxy acid enantiomers; (ii) the activity of PylRS variants for benzyl derivatives of malonic acid; and (iii) the apparent inability of N-Me amino acids to function as ribosome substrates in living cells. Using the PARTI assay, we also provide direct evidence for the cellular production of 2′,3′-diacylated tRNA in certain cases. The ease and simplicity of the PARTI workflow should benefit ongoing efforts to study and improve the cellular incorporation of non-α-amino acid monomers into proteins. 
    more » « less
  4. Accurate translation of the genetic code is maintained in part by aminoacyl-tRNA synthetases (aaRS) proofreading mechanisms that ensure correct attachment of a cognate amino acid to a transfer RNA (tRNA). During environmental stress, such as oxidative stress, demands on aaRS proofreading are altered by changes in the availability of cytoplasmic amino acids. For example, oxidative stress increases levels of cytotoxic tyrosine isomers, noncognate amino acids normally excluded from translation by the proofreading activity of phenylalanyl-tRNA synthetase (PheRS). Here we show that oxidation of PheRS induces a conformational change, generating a partially unstructured protein. This conformational change does not affect Phe or Tyr activation or the aminoacylation activity of PheRS. However, in vitro and ex vivo analyses reveal that proofreading activity to hydrolyze Tyr-tRNA Phe is increased during oxidative stress, while the cognate Phe-tRNA Phe aminoacylation activity is unchanged. In HPX − , Escherichia coli that lack reactive oxygen-scavenging enzymes and accumulate intracellular H 2 O 2 , we found that PheRS proofreading is increased by 11%, thereby providing potential protection against hazardous cytoplasmic m -Tyr accumulation. These findings show that in response to oxidative stress, PheRS proofreading is positively regulated without negative effects on the enzyme’s housekeeping activity in translation. Our findings also illustrate that while the loss of quality control and mistranslation may be beneficial under some conditions, increased proofreading provides a mechanism for the cell to appropriately respond to environmental changes during oxidative stress. 
    more » « less
  5. Abstract A fundamental understanding of the enantiospecific interactions between chiral adsorbates and understanding of their interactions with chiral surfaces is key to unlocking the origins of enantiospecific surface chemistry. Herein, the adsorption and decomposition of the amino acid proline (Pro) have been studied on the achiral Cu(110) and Cu(111) surfaces and on the chiral Cu(643)R&Ssurfaces. Isotopically labelled 1‐13C‐l‐Pro has been used to probe the Pro decomposition mechanism and to allow mass spectrometric discrimination ofd‐Pro and 1‐13C‐l‐Pro when adsorbed as mixtures. On the Cu(111) surface, X‐ray photoelectron spectroscopy reveals that Pro adsorbs as an anionic species in the monolayer. On the chiral Cu(643)R&Ssurface, adsorbed Pro enantiomers decompose with non‐enantiospecific kinetics. However, the decomposition kinetics were found to be different on the terraces versus the kinked steps. Exposure of the chiral Cu(643)R&Ssurfaces to a racemic gas phase mixture ofd‐Pro and 1‐13C‐l‐Pro resulted in the adsorption of a racemic mixture; i.e., adsorption is not enantiospecific. However, exposure to non‐racemic mixtures ofd‐Pro and 1‐13C‐l‐Pro resulted in amplification of enantiomeric excess on the surface, indicative of homochiral aggregation of adsorbed Pro. During co‐adsorption, this amplification is observed even at very low coverages, quite distinct from the behavior of other amino acids, which begin to exhibit homochiral aggregation only after reaching monolayer coverages. The equilibrium adsorption ofd‐Pro and 1‐13C‐l‐Pro mixtures on achiral Cu(110) did not display any aggregation, consistent with prior scanning tunneling microscopy (STM) observations ofdl‐Pro/Cu(110). This demonstrates convergence between findings from equilibrium adsorption methods and STM experiments and corroborates formation of a 2D random solid solution. 
    more » « less