skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cell-free synthesis of the Salmonella specific broad host range bacteriophage, felixO1
Phage-based biocontrol of foodborne Salmonella is limited by the requisite use of Salmonella to propagate the phages. This limitation can be circumvented by producing Salmonella phages using a cell-free gene expression system (CFE) with a non-pathogenic chassis. Here, we produce the Salmonella phage felixO1 using an E. coli-based CFE system.  more » « less
Award ID(s):
2228971
PAR ID:
10541747
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
Editor(s):
NA
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Microbiological Methods
Edition / Version:
NA
Volume:
220
Issue:
C
ISSN:
0167-7012
Page Range / eLocation ID:
106920
Subject(s) / Keyword(s):
felixO1 Phage Salmonella Cell-free expression
Format(s):
Medium: X Size: 0.89 Other: PDF
Size(s):
0.89
Sponsoring Org:
National Science Foundation
More Like this
  1. Navarre, William (Ed.)
    The bacterial flagellum is a rotary motor organelle and important virulence factor that propels motile pathogenic bacteria, such asSalmonella enterica, through their surroundings. Bacteriophages, or phages, are viruses that solely infect bacteria. As such, phages have myriad applications in the healthcare field, including phage therapy against antibiotic-resistant bacterial pathogens. Bacteriophage χ (Chi) is a flagellum-dependent (flagellotropic) bacteriophage, which begins its infection cycle by attaching its long tail fiber to theS.entericaflagellar filament as its primary receptor. The interactions between phage and flagellum are poorly understood, as are the reasons that χ only kills certainSalmonellaserotypes while others entirely evade phage infection. In this study, we used molecular cloning, targeted mutagenesis, heterologous flagellin expression, and phage-host interaction assays to determine which domains within the flagellar filament protein flagellin mediate this complex interaction. We identified the antigenic N- and C-terminal D2 domains as essential for phage χ binding, with the hypervariable central D3 domain playing a less crucial role. Here, we report that the primary structure of theSalmonellaflagellin D2 domains is the major determinant of χ adhesion. The phage susceptibility of a strain is directly tied to these domains. We additionally uncovered important information about flagellar function. The central and most variable domain, D3, is not required for motility inS. Typhimurium 14028s, as it can be deleted or its sequence composition can be significantly altered with minimal impacts on motility. Further knowledge about the complex interactions between flagellotropic phage χ and its primary bacterial receptor may allow genetic engineering of its host range for use as targeted antimicrobial therapy against motile pathogens of the χ-host generaSalmonella,Escherichia, orSerratia. 
    more » « less
  2. Bacterial viruses or phages have great potential in the medical and agricultural fields as alternatives to antibiotics to control nuisance populations of pathogenic bacteria. However, current analysis and purification protocols for phages tend to be resource intensive and have numbers of limitations, such as impacting phage viability. The present study explores the potential of employing the electrokinetic technique of insulator-based dielectrophoresis (iDEP) for virus assessment, separation and enrichment. In particular, the application of the parameter “trapping value” (Tv) is explored as a standardized iDEP signature for each phage species. The present study includes mathematical modeling with COMSOL Multiphysics and extensive experimentation. Three related, but genetically and structurally distinct, phages were studied: Salmonella enterica phage SPN3US, Pseudomonas aeruginosa phage ϕKZ and P. chlororaphis phage 201ϕ2-1. This is the first iDEP study on bacteriophages with large and complex virions and the results illustrate their virions can be successfully enriched with iDEP systems and still retain infectivity. In addition, our results indicate that characterization of the negative dielectrophoretic response of a phage in terms of Tv could be used for predicting individual virus behavior in iDEP systems. The findings reported here can contribute to the establishment of protocols to analyze, purify and/or enrich samples of known and unknown phages. 
    more » « less
  3. Abstract AimsTo determine if the bacteriophage abortive infection system ToxIN is present in foodborne Salmonella and if it protects against infection by bacteriophages specific to enteric bacteria. Methods and resultsA set of foodborne Salmonella enteritidis isolates from a 2010 eggshell outbreak was identified via BLASTN (basic local alignment search tool nucleotide) queries as harboring a close homolog of ToxIN, carried on a plasmid with putative mobilization proteins. This homolog was cloned into a plasmid vector and transformed into the laboratory strain Salmonella typhimurium LT2 and tested against a set of Salmonella-specific phages (FelixO1, S16, Sp6, LPST153, and P22 HT105/1 int-201). ToxIN reduced infection by FelixO1, S16, and LPST153 by ∼1–4 log PFU ml−1 while reducing the plaque size of Sp6. When present in LT2 and Escherichia coli MG1655, ToxIN conferred cross-genus protection against phage isolates, which infect both bacteria. Finally, the putative ToxIN plasmid was found in whole-genome sequence contigs of several Salmonella serovars, pathogenic E. coli, and other pathogenic enterobacteria. ConclusionsSalmonella and E. coli can resist infection by several phages via ToxIN under laboratory conditions; ToxIN is present in foodborne pathogens including Salmonella and Shiga-toxigenic E. coli. 
    more » « less
  4. null (Ed.)
    Abstract Filamentous phages establish chronic infections in their bacterial hosts, and new phages are secreted by infected bacteria for multiple generations, typically without causing host death. Often, these viruses integrate in their host’s genome by co-opting the host’s XerCD recombinase system. In several cases, these viruses also encode genes that increase bacterial virulence in plants and animals. Here, we describe a new filamentous phage, UPϕ901, which we originally found integrated in a clinical isolate of Escherichia coli from urine. UPϕ901 and closely related phages can be found in published genomes of over 200 other bacteria, including strains of Citrobacter koseri, Salmonella enterica, Yersinia enterocolitica, and Klebsiella pneumoniae. Its closest relatives are consistently found in urine or in the blood and feces of patients with urinary tract infections. More distant relatives can be found in isolates from other environments, including sewage, water, soil, and contaminated food. Each of these phages, which we collectively call ‘UPϕ viruses’, also harbors two or more novel genes of unknown function. 
    more » « less
  5. Dudley, Edward G. (Ed.)
    ABSTRACT Bacteriophages (phages) are currently available for use by the food industry to control the foodborne pathogen Listeria monocytogenes . Although phage biocontrols are effective under specific conditions, their use can select for phage-resistant bacteria that repopulate phage-treated environments. Here, we performed short-term coevolution experiments to investigate the impact of single phages and a two-phage cocktail on the regrowth of phage-resistant L. monocytogenes and the adaptation of the phages to overcome this resistance. We used whole-genome sequencing to identify mutations in the target host that confer phage resistance and in the phages that alter host range. We found that infections with Listeria phages LP-048, LP-125, or a combination of both select for different populations of phage-resistant L. monocytogenes bacteria with different regrowth times. Phages isolated from the end of the coevolution experiments were found to have gained the ability to infect phage-resistant mutants of L. monocytogenes and L. monocytogenes strains previously found to be broadly resistant to phage infection. Phages isolated from coinfected cultures were identified as recombinants of LP-048 and LP-125. Interestingly, recombination events occurred twice independently in a locus encoding two proteins putatively involved in DNA binding. We show that short-term coevolution of phages and their hosts can be utilized to obtain mutant and recombinant phages with adapted host ranges. These laboratory-evolved phages may be useful for limiting the emergence of phage resistance and for targeting strains that show general resistance to wild-type (WT) phages. IMPORTANCE Listeria monocytogenes is a life-threatening bacterial foodborne pathogen that can persist in food processing facilities for years. Phages can be used to control L. monocytogenes in food production, but phage-resistant bacterial subpopulations can regrow in phage-treated environments. Coevolution experiments were conducted on a Listeria phage-host system to provide insight into the genetic variation that emerges in both the phage and bacterial host under reciprocal selective pressure. As expected, mutations were identified in both phage and host, but additionally, recombination events were shown to have repeatedly occurred between closely related phages that coinfected L. monocytogenes . This study demonstrates that in vitro evolution of phages can be utilized to expand the host range and improve the long-term efficacy of phage-based control of L. monocytogenes . This approach may also be applied to other phage-host systems for applications in biocontrol, detection, and phage therapy. 
    more » « less