User-defined functions (UDFs) are widely used to enhance the ca- pabilities of DBMSs. However, using UDFs comes with a significant performance penalty because DBMSs treat UDFs as black boxes, which hinders their ability to optimize queries that invoke such UDFs. To mitigate this problem, in this paper we present LAMBDA, a technique and framework for improving DBMSs’ performance in the presence of UDFs. The core idea of LAMBDA is to statically infer properties of UDFs that facilitate UDF processing. Taking one such property as an example, if DBMSs know that a UDF is pure, that is it returns the same result given the same arguments, they can leverage a cache to avoid repetitive UDF invocations that have the same call arguments. We reframe the problem of analyzing UDF properties as a data flow problem. We tackle the data flow problem by building LAMBDA on top of an extensible abstract interpretation framework and de- veloping an analysis model that is tailored for UDFs. Currently, LAMBDA supports inferring four properties from UDFs that are widely used across DBMSs. We evaluate LAMBDA on a benchmark that is derived from production query workloads and UDFs. Our evaluation results show that (1) LAMBDA conservatively and ef- ficiently infers the considered UDF properties, and (2) inferring such properties improves UDF performance, with a time reduction ranging from 10% to 99%. In addition, when applied to 20 produc- tion UDFs, LAMBDA caught five instances in which developers provided incorrect UDF property annotations. We qualitatively compare LAMBDA against Froid, a state-of-the-art framework for improving UDF performance, and explain how LAMBDA can opti- mize UDFs that are not supported by Froid.
more »
« less
Udon: Efficient Debugging of User-Defined Functions in Big Data Systems with Line-by-Line Control
Many big data systems are written in languages such as C, C++, Java, and Scala to process large amounts of data efficiently, while data analysts often use Python to conduct data wrangling, statistical analysis, and machine learning. User-defined functions (UDFs) are commonly used in these systems to bridge the gap between the two ecosystems. In this paper, we propose Udon, a novel debugger to support fine-grained debugging of UDFs. Udon encapsulates the modern line-by-line debugging primitives, such as the ability to set breakpoints, perform code inspections, and make code modifications while executing a UDF on a single tuple. It includes a novel debug-aware UDF execution model to ensure the responsiveness of the operator during debugging. It utilizes advanced state-transfer techniques to satisfy breakpoint conditions that span across multiple UDFs. It incorporates various optimization techniques to reduce the runtime overhead. We conduct experiments with multiple UDF workloads on various datasets and show its high efficiency and scalability.
more »
« less
- Award ID(s):
- 2200274
- PAR ID:
- 10541803
- Publisher / Repository:
- ACM Digital Library
- Date Published:
- Journal Name:
- Proceedings of the ACM on Management of Data
- Volume:
- 1
- Issue:
- 4
- ISSN:
- 2836-6573
- Page Range / eLocation ID:
- 1 to 26
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many data processing systems allow SQL queries that call user-defined functions (UDFs) written in conventional programming languages. While such SQL extensions provide convenience and flexibility to users, queries involving UDFs are not as efficient as their pure SQL counterparts that invoke SQL’s highly-optimized built-in functions. Motivated by this problem, we propose a new technique for translating SQL queries with UDFs to pure SQL expressions. Unlike prior work in this space, our method is not based on syntactic rewrite rules and can handle a much more general class of UDFs. At a high-level, our method is based on counterexample-guided inductive synthesis (CEGIS) but employs a novel compositional strategy that decomposes the synthesis task into simpler sub-problems. However, because there is no universal decomposition strategy that works for all UDFs, we propose a novel lazy inductive synthesis approach that generates a sequence of decompositions that correspond to increasingly harder inductive synthesis problems. Because most realistic UDF-to-SQL translation tasks are amenable to a fine-grained decomposition strategy, our lazy inductive synthesis method scales significantly better than traditional CEGIS. We have implemented our proposed technique in a tool called CLIS for optimizing Spark SQL programs containing Scala UDFs. To evaluate CLIS, we manually study 100 randomly selected UDFs and find that 63 of them can be expressed in pure SQL. Our evaluation on these 63 UDFs shows that CLIS can automatically synthesize equivalent SQL expressions in 92% of the cases and that it can solve 2.4× more benchmarks compared to a baseline that does not use our compositional approach. We also show that CLIS yields an average speed-up of 3.5× for individual UDFs and 1.3× to 3.1× in terms of end-to-end application performance.more » « less
-
null (Ed.)Today's data science pipelines often rely on user-defined functions (UDFs) written in Python. But interpreted Python code is slow, and Python UDFs cannot be compiled to machine code easily. We present Tuplex, a new data analytics framework that just in-time compiles developers' natural Python UDFs into efficient, end-to-end optimized native code. Tuplex introduces a novel dual-mode execution model that compiles an optimized fast path for the common case, and falls back on slower exception code paths for data that fail to match the fast path's assumptions. Dual-mode execution is crucial to making end-to-end optimizing compilation tractable: by focusing on the common case, Tuplex keeps the code simple enough to apply aggressive optimizations. Thanks to dual-mode execution, Tuplex pipelines always complete even if exceptions occur, and Tuplex's post-facto exception handling simplifies debugging. We evaluate Tuplex with data science pipelines over real-world datasets. Compared to Spark and Dask, Tuplex improves end-to-end pipeline runtime by 5-91x and comes within 1.1-1.7x of a hand-optimized C++ baseline. Tuplex outperforms other Python compilers by 6x and competes with prior, more limited query compilers. Optimizations enabled by dual-mode processing improve runtime by up to 3x, and Tuplex performs well in a distributed setting on serverless functions.more » « less
-
Data-intensive scalable computing (DISC) systems such as Google’s MapReduce, Apache Hadoop, and Apache Spark are being leveraged to process massive quantities of data in the cloud. Modern DISC applications pose new challenges in exhaustive, automatic testing because they consist of dataflow operators, and complex user-defined functions (UDF) are prevalent unlike SQL queries. We design a new white-box testing approach, called BigTest to reason about the internal semantics of UDFs in tandem with the equivalence classes created by each dataflow and relational operator. Our evaluation shows that, despite ultra-large scale input data size, real world DISC applications are often significantly skewed and inadequate in terms of test coverage, leaving 34% of Joint Dataflow and UDF (JDU) paths untested. BigTest shows the potential to minimize data size for local testing by 10^5 to 10^8 orders of magnitude while revealing 2X more manually-injected faults than the previous approach. Our experiment shows that only few of the data records (order of tens) are actually required to achieve the same JDU coverage as the entire production data. The reduction in test data also provides CPU time saving of 194X on average, demonstrating that interactive and fast local testing is feasible for big data analytics, obviating the need to test applications on huge production data.more » « less
-
Serving deep learning (DL) models on relational data has become a critical requirement across diverse commercial and scientific domains, sparking growing interest recently. In this visionary paper, we embark on a comprehensive exploration of representative architectures to address the requirement. We highlight three pivotal paradigms: The state-of-the-art \textit{DL-centric} architecture offloads DL computations to dedicated DL frameworks. The potential \textit{UDF-centric} architecture encapsulates one or more tensor computations into User Defined Functions (UDFs) within the relational database management system (RDBMS). The potential \textit{relation-centric} architecture aims to represent a large-scale tensor computation through relational operators. While each of these architectures demonstrates promise in specific use scenarios, we identify urgent requirements for seamless integration of these architectures and the middle ground in-between these architectures. We delve into the gaps that impede the integration and explore innovative strategies to close them. We present a pathway to establish a novel RDBMS for enabling a broad class of data-intensive DL inference applications.more » « less