Recent years have seen the increasing attention and popularity of federated learning (FL), a distributed learning framework for privacy and data security. However, by its fundamental design, federated learning is inherently vulnerable to model poisoning attacks: a malicious client may submit the local updates to influence the weights of the global model. Therefore, detecting malicious clients against model poisoning attacks in federated learning is useful in safety-critical tasks.However, existing methods either fail to analyze potential malicious data or are computationally restrictive. To overcome these weaknesses, we propose a robust federated learning method where the central server learns a supervised anomaly detector using adversarial data generated from a variety of state-of-the-art poisoning attacks. The key idea of this powerful anomaly detector lies in a comprehensive understanding of the benign update through distinguishing it from the diverse malicious ones. The anomaly detector would then be leveraged in the process of federated learning to automate the removal of malicious updates (even from unforeseen attacks).Through extensive experiments, we demonstrate its effectiveness against backdoor attacks, where the attackers inject adversarial triggers such that the global model will make incorrect predictions on the poisoned samples. We have verified that our method can achieve 99.0% detection AUC scores while enjoying longevity as the model converges. Our method has also shown significant advantages over existing robust federated learning methods in all settings. Furthermore, our method can be easily generalized to incorporate newly-developed poisoning attacks, thus accommodating ever-changing adversarial learning environments. 
                        more » 
                        « less   
                    
                            
                            Data poisoning attacks in intelligent transportation systems: A survey
                        
                    
    
            Emerging technologies drive the ongoing transformation of Intelligent Transportation Systems (ITS). This transformation has given rise to cybersecurity concerns, among which data poisoning attack emerges as a new threat as ITS increasingly relies on data. In data poisoning attacks, attackers inject malicious perturbations into datasets, potentially leading to inaccurate results in offline learning and real-time decision-making processes. This paper concentrates on data poisoning attack models against ITS. We identify the main ITS data sources vulnerable to poisoning attacks and application scenarios that enable staging such attacks. A general framework is developed following rigorous study process from cybersecurity but also considering specific ITS application needs. Data poisoning attacks against ITS are reviewed and categorized following the framework. We then discuss the current limitations of these attack models and the future research directions. Our work can serve as a guideline to better understand the threat of data poisoning attacks against ITS applications, while also giving a perspective on the future development of trustworthy ITS. Emerging technologies drive the ongoing transformation of Intelligent Transportation Systems (ITS). This transformation has given rise to cybersecurity concerns, among which data poisoning attack emerges as a new threat as ITS increasingly relies on data. In data poisoning attacks, attackers inject malicious perturbations into datasets, potentially leading to inaccurate results in offline learning and real-time decision-making processes. This paper concentrates on data poisoning attack models against ITS. We identify the main ITS data sources vulnerable to poisoning attacks and application scenarios that enable staging such attacks. A general framework is developed following rigorous study process from cybersecurity but also considering specific ITS application needs. Data poisoning attacks against ITS are reviewed and categorized following the framework. We then discuss the current limitations of these attack models and the future research directions. Our work can serve as a guideline to better understand the threat of data poisoning attacks against ITS applications, while also giving a perspective on the future development of trustworthy ITS. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2326340
- PAR ID:
- 10541839
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Transportation Research Part C: Emerging Technologies
- Volume:
- 165
- Issue:
- C
- ISSN:
- 0968-090X
- Page Range / eLocation ID:
- 104750
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Diffusion models are vulnerable to backdoor attacks, where malicious attackers inject backdoors by poisoning certain training samples during the training stage. This poses a significant threat to real-world applications in the Model-as-a-Service (MaaS) scenario, where users query diffusion models through APIs or directly download them from the internet. To mitigate the threat of backdoor attacks under MaaS, black-box input-level backdoor detection has drawn recent interest, where defenders aim to build a firewall that filters out backdoor samples in the inference stage, with access only to input queries and the generated results from diffusion models. Despite some preliminary explorations on the traditional classification tasks, these methods cannot be directly applied to the generative tasks due to two major challenges: (1) more diverse failures and (2) a multi-modality attack surface. In this paper, we propose a black-box input-level backdoor detection framework on diffusion models, called UFID. Our defense is motivated by an insightful causal analysis: Backdoor attacks serve as the confounder, introducing a spurious path from input to target images, which remains consistent even when we perturb the input samples with Gaussian noise. We further validate the intuition with theoretical analysis. Extensive experiments across different datasets on both conditional and unconditional diffusion models show that our method achieves superb performance on detection effectiveness and run-time efficiency.more » « less
- 
            Cyber-defense systems are being developed to automatically ingest Cyber Threat Intelligence (CTI) that contains semi-structured data and/or text to populate knowledge graphs. A potential risk is that fake CTI can be generated and spread through Open-Source Intelligence (OSINT) communities or on the Web to effect a data poisoning attack on these systems. Adversaries can use fake CTI examples as training input to subvert cyber defense systems, forcing the model to learn incorrect inputs to serve their malicious needs. In this paper, we automatically generate fake CTI text descriptions using transformers. We show that given an initial prompt sentence, a public language model like GPT-2 with fine-tuning, can generate plausible CTI text with the ability of corrupting cyber-defense systems. We utilize the generated fake CTI text to perform a data poisoning attack on a Cybersecurity Knowledge Graph (CKG) and a cybersecurity corpus. The poisoning attack introduced adverse impacts such as returning incorrect reasoning outputs, representation poisoning, and corruption of other dependent AI-based cyber defense systems. We evaluate with traditional approaches and conduct a human evaluation study with cybersecurity professionals and threat hunters. Based on the study, professional threat hunters were equally likely to consider our fake generated CTI as true.more » « less
- 
            In the field of multi-agent autonomous transportation, such as automated payload delivery or highway on-ramp merging, agents routinely exchange knowledge to optimize their shared objective and adapt to environmental novelties through Cooperative Multi-Agent Reinforcement Learning (CMARL) algorithms. This knowledge exchange between agents allows these systems to operate efficiently and adapt to dynamic environments. However, this cooperative learning process is susceptible to adversarial poisoning attacks, as highlighted by contemporary research. Particularly, the poisoning attacks where malicious agents inject deceptive information camouflaged within the differential noise, a pivotal element for differential privacy (DP)-based CMARL algorithms, pose formidable challenges to identify and overcome. The consequences of not addressing this issue are far-reaching, potentially jeopardizing safety-critical operations and the integrity of data privacy in these applications. Existing research has strived to develop anomaly detection based defense models to counteract conventional poisoning methods. Nonetheless, the recurring necessity for model offloading and retraining with labeled anomalous data undermines their practicality, considering the inherently dynamic nature of the safety-critical autonomous transportation applications. Further, it is imperative to maintain data privacy, ensure high performance, and adapt to environmental changes. Motivated by these challenges, this article introduces a novel defense mechanism against stealthy adversarial poisoning attacks in the autonomous transportation domain, termedReinforcing Autonomous Multi-agent Protection through Adversarial Resistance in Transportation(RAMPART). Leveraging a GAN model at each local node, RAMPART effectively filters out malicious advice in an unsupervised manner while generating synthetic samples for each state-action pair to accommodate environmental uncertainties and eliminate the need for labeled training data. Our extensive experimental analysis, conducted in a private payload delivery network—a common application in the autonomous multi-agent transportation domain—demonstrates that RAMPART successfully defends against a DP-exploited poisoning attack with a 30% attack ratio, achieving an F1 score of 0.852 and accuracy of 96.3% in heavy traffic environments.more » « less
- 
            Federated learning—multi-party, distributed learning in a decentralized environment—is vulnerable to model poisoning attacks, more so than centralized learning. This is because malicious clients can collude and send in carefully tailored model updates to make the global model inaccurate. This motivated the development of Byzantine-resilient federated learning algorithms, such as Krum, Bulyan, FABA, and FoolsGold. However, a recently developed untargeted model poisoning attack showed that all prior defenses can be bypassed. The attack uses the intuition that simply by changing the sign of the gradient updates that the optimizer is computing, for a set of malicious clients, a model can be diverted from the optima to increase the test error rate. In this work, we develop FLAIR—a defense against this directed deviation attack (DDA), a state-of-the-art model poisoning attack. FLAIR is based on ourintuition that in federated learning, certain patterns of gradient flips are indicative of an attack. This intuition is remarkably stable across different learning algorithms, models, and datasets. FLAIR assigns reputation scores to the participating clients based on their behavior during the training phase and then takes a weighted contribution of the clients. We show that where the existing defense baselines of FABA [IJCAI’19], FoolsGold [Usenix ’20], and FLTrust [NDSS ’21] fail when 20-30% of the clients are malicious, FLAIR provides byzantine-robustness upto a malicious client percentage of 45%. We also show that FLAIR provides robustness against even a white-box version of DDA.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    