Abstract Islands in oligotrophic oceans act as local sources of nutrients. These nutrients originate from land and from deep oceanic nutrients introduced to the photic zone by tides, currents, and internal waves interacting with island bathymetry. These processes create the island mass effect (IME), in which increased chlorophylla(Chla) is found near islands compared to oceanic waters. The IME has been described via satellite observations, but the effects on phytoplankton community structure are not well documented. From 2013 to 2020, chlorophyll, nutrient, and picoplankton samples were collected from multiple depths on quarterly cruises at two sites south of O'ahu, Hawai'i.Prochlorococcus,Synechococcus, picoeukaryotes, and heterotrophic bacteria were enumerated using flow cytometry. We compared nearshore results to Sta. ALOHA, 100 km from O'ahu. Consistent with the expected IME, Chlaconcentrations were significantly enhanced at both nearshore sites compared to Sta. ALOHA.Prochlorococcusconcentrations increased with greater distance from shore, particularly below 50 m; mixed layer concentrations ofSynechococcusand picoeukaryotes significantly decreased with greater distance from shore, as did concentrations of nitrate and phosphate below the mixed layer. Heterotrophic bacteria concentrations did not show a spatial trend. Carbon‐based biomass estimates of the picoplankton population indicated that the IME‐associated Chlaincreases near the island are likely driven by larger phytoplankton classes. This study describes the IME‐associated shift in the picophytoplankton community distribution, which has implications for nutrient cycling, food web dynamics and fisheries in oligotrophic island ecosystems, and adds to the understanding of spatial heterogeneity in carbon fixation in the ocean.
more »
« less
Shore and mid-channel surveys reveal distinct phytoplankton-bacterial population associations along an urban estuary
A growing body of literature has highlighted the importance of phytoplankton-bacterial associations to marine and estuarine ecological and biogeochemical function, but their population linkages remain sparsely characterized within urban estuaries. Since many developed coastlines are heavily impacted by anthropogenic nutrient inputs, elucidating their phytoplankton-bacterial dynamics provides insight into nutrient cycling, productivity, and can help inform water quality management. This study compared surface (0.5 m depth) physical water quality, cell abundances of major phytoplankton taxa and bacteria, as well as concentrations of chlorophylla(chla) and dissolved organic matter (DOM) in the nitrogen (N)-enriched Western Long Island Sound (WLIS), USA, between mid-channel and shore sites (in 2020 and 2021). Shore bacterial and phytoplankton abundances as well as DOM concentrations (primarily dissolved organic N and carbon [DOC]), were significantly higher than mid-channel, especially during summer, indicative of terrestrial loading influencing microbial assemblages as well as N and C cycling. Abundances of key phytoplankton taxa were better indicators of bacterial abundances than chla, as bacterial abundances positively and significantly correlated with those of dinoflagellates, especially the most common generaProrocentrum(mid-channel, shore) andHeterocapsa(shore only), but not with diatoms. However, pennate diatom abundances negatively and significantly correlated with DOC concentrations in the mid-channel. Results highlight the impact of terrestrial inputs on WLIS microbial assemblage dynamics, presumably by favoring bacteria and dinoflagellate population coupling, as well as shed new ecological insight into how phytoplankton and bacterial communities respond to nutrient loadings in urban estuaries.
more »
« less
- Award ID(s):
- 2039867
- PAR ID:
- 10541877
- Publisher / Repository:
- Inter-Research
- Date Published:
- Journal Name:
- Aquatic Microbial Ecology
- Volume:
- 90
- ISSN:
- 0948-3055
- Page Range / eLocation ID:
- 121 to 139
- Subject(s) / Keyword(s):
- Algal-bacterial interactions dissolved organic matter DOC dinoflagellates phytoplankton Long Island Sound urban estuaries diatoms Prorocentrum harmful algal blooms
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The capacity for coastal river networks to transport and transform dissolved organic matter (DOM) is widely accepted. However, climate‐induced shifts in stormwater runoff and tidal extension alter fresh and marine water source contributions, associated DOM, and processing rates of nutrients entering coastal canals. We investigate how time‐variable interactions among coastal water source contributions influence the concentrations of dissolved organic carbon (DOC), nutrients, and DOM composition in urban canals. We quantified the spatiotemporal variability of DOM quality and nutrient concentrations to determine contributions of tidal marine water, rainwater, stormwater runoff, and groundwater to three coastal urban canals of Miami, Florida (USA). We created a Bayesian Monte Carlo mixing model using measurements of fluorescent DOM (fDOM), DOC concentrations, δ18O and δ2H isotopic signatures, and chloride (Cl−). Fractional contributions of groundwater averaged 17% in the dry season and 26% at peak high tide during the subtropical wet season (September–November). The canal‐to‐marine head difference (CMHD) was a primary driver of groundwater contributions to coastal urban canals and monthly patterns of fDOM/DOC. High tide (>1 m) and discharge events were found to connect canals to upstream sources of terrestrial DOM. Loading of terrestrially sourced DOC and DOM is pulsed to urban canals, shunted downstream and supplemented by microbially sourced DOM during the wet season at high tide. Overall, we demonstrate that a combined tracer approach with isotopes and fDOM can help identify groundwater contributions to coastal waterways and that autochthonous fDOM may prime the degradation of carbon or nutrients as the CMHD pushes inland.more » « less
-
This study evaluated water quality, nitrogen (N), and phytoplankton assemblage linkages along the western Long Island Sound (USA) shoreline (Nov. 2020 – Dec. 2021) following COVID-19 stay-in-place (SIP) orders through monthly surveys and N-addition bioassays. Ammonia-N (AmN; NH3+NH4+) negatively correlated with total chlorophyll-a (chl-a) at all sites; this was significant at Alley Creek, adjacent to urban wastewater inputs, and at Calf Pasture, by the Norwalk River (Spearman rank correlation, p<0.01 and 0.02). Diatoms were abundant throughout the study, though dinoflagellates (Heterocapsa, Prorocentrum), euglenoids/cryptophytes, and both nano- and picoplankton biomass increased during summer. In field and experimental assessments, high nitrite+nitrate (N+N) and low AmN increased diatom abundances while AmN was positively linked to cryptophyte concentrations. Likely N+N decreases with presumably minimal changes in AmN and organic N during COVID-19 SIP resulted in phytoplankton assemblage shifts (decreased diatoms, increased euglenoids/cryptophytes), highlighting the ecological impacts of N-form delivered by wastewater to urban estuaries.more » « less
-
Dissolved organic matter (DOM) drives biogeochemical processes in aquatic ecosystems. Yet, how hydrologic restoration in nutrient‐enriched ecosystems changes DOM and the consequences of those changes for the carbon cycle remain unclear. To predict the consequences of hydrologic restoration on carbon cycling in restored wetlands, we need to understand how local environmental factors influence production, processing, and transport of DOM. We collected surface water samples along transects in restored peat (organic‐rich, macrophyte‐dominated) and marl (carbonate, periphyton‐dominated) freshwater marshes in the Everglades (Florida, U.S.A.) that varied in environmental factors (water depth, phosphorus [P] concentrations [water, macrophytes, periphyton, and soil], and primary producer biomass) to understand drivers of dissolved organic carbon (DOC) concentrations and DOM composition. Higher water depths led to a “greening” of DOM, due to increasing algal contributions, with decreasing concentrations of DOC in peat wetlands, and a “browning” of DOM, due to increasing humic contributions, with increasing DOC concentrations in marl wetlands. Soil total P was positively correlated with DOC concentrations and microbial contributions to DOM in peat wetlands, and periphyton total P was positively correlated with algal contributions to DOM in marl wetlands. Despite large variations in both vegetation biomass and periphyton biovolume across transects and sites, neither were predictors of DOC concentrations or DOM composition. Hydrologic restoration differentially alters DOM in peat and marl marshes and interacts with nutrient enrichment to shift proportions of green and brown contributions to surface water chemistry, which has the potential to modify wetland food webs, as well as the processing of carbon by micro‐organisms.more » « less
-
Abstract Dissolved organic matter (DOM), often measured as dissolved organic carbon (DOC), plays a fundamental role in influencing the structure and function of lake ecosystems. Due to the myriad ecosystem effects of DOM, widespread observations of long‐term increasing DOM concentrations have received much attention from ecologists. DOM positively influences primary production and consumer production at low concentrations due to the fertilising influence of bound nutrients. However, beyond a unimodal peak in production, a reduced light environment may result in a negative effect on production. This unimodal model has been largely developed and tested in lakes with low to moderate DOM concentrations (i.e., typically ≤10 mg/L DOC).To understand ecological responses in lakes across a larger range in DOM concentrations, we examined the response of benthic invertebrate communities in 148 Swedish lakes with DOM concentrations ranging between 0.67 and 32.77 mg/L DOC.We found that increasing DOM concentrations had a strong effect on invertebrate community composition belowc.10 mg/L. Across this range, abundances of individual taxa both increased and decreased, probably in response to environmental change induced by DOM. However, in lakes above this concentration, increasing DOM had minimal influence on community composition.As DOM concentrations continue to increase, faunal communities in lakes below this 10 mg/L DOC threshold are likely to undergo substantial change whereas those above this threshold are likely to be minimally impacted.more » « less
An official website of the United States government

