skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Edgeworth: Efficient and Scalable Authoring of Visual Thinking Activities
Visual thinking with diagrams is a crucial skill for learning and problem-solving in STEM subjects. To improve in this area, students need a variety of visual problems for deliberate practice. However, in our interviews, educators shared that they struggle to create these practice exercises because of limitations of existing tools. We introduce Edgeworth, a tool designed to help educators easily create visual problems. Edgeworth works in two main ways: firstly, it takes a single diagram from the user and systematically alters it to produce many variations, which the educator can then choose from to create multiple problems. Secondly, it automates the layout of diagrams, ensuring consistent high quality without the need for manual adjustments. To assess Edgeworth, we carried out case studies, a technical evaluation, and expert walkthrough demonstrations. We show that Edgeworth can create problems in three domains: geometry, chemistry, and discrete math. These problems were authored in just 15 lines of Edgeworth code on average. Edgeworth generated usable answer options within the first 10 diagram variations in 87% of authored problems. Finally, educators gave positive feedback on Edgeworth's utility and the real-world applicability of its outputs.  more » « less
Award ID(s):
2119007 2150217
PAR ID:
10542035
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400706332
Page Range / eLocation ID:
98 to 109
Format(s):
Medium: X
Location:
Atlanta GA USA
Sponsoring Org:
National Science Foundation
More Like this
  1. To prepare our next generation to face geospatial problems that have extreme time constraints (e.g., disasters, climate change) we need to create educational pathways that help students develop their geocomputational thinking skills. First, educators are central in helping us create those pathways, therefore, we need to clearly convey to them why and in which contexts this thinking is necessary. For that purpose, a new definition for geocomputational thinking is suggested that makes it clear that this thinking is needed for geospatial problems that have extreme time constraints. Secondly, we can not further burden educators with more demands, rather we should work with them to better understand the existing curricular context and implement sensible changes where it is most impactful. Lastly, the impacts of these implementations need to be carefully measured, and particularly in terms of broadening participation. A few examples are provided that show promise. 
    more » « less
  2. System modeling language (SysML) diagrams generated manually by system modelers can sometimes be prone to errors, which are time-consuming and introduce subjectivity. Natural language processing (NLP) techniques and tools to create SysML diagrams can aid in improving software and systems design processes. Though NLP effectively extracts and analyzes raw text data, such as text-based requirement documents, to assist in design specification, natural language, inherent complexity, and variability pose challenges in accurately interpreting the data. In this paper, we explore the integration of NLP with SysML to automate the generation of system models from input textual requirements. We propose a model generation framework leveraging Python and the spaCy NLP library to process text input and generate class/block definition diagrams using PlantUML for visual representation. The intent of this framework is to aid in reducing the manual effort in creating SysML v1.6 diagrams—class/block definition diagrams in this case. We evaluate the effectiveness of the framework using precision and recall measures. The contribution of this paper to the systems modeling domain is two-fold. First, a review and analysis of natural language processing techniques for the automated generation of SysML diagrams are provided. Second, a framework to automatically extract textual relationships tailored for generating a class diagram/block diagram that contains the classes/blocks, their relationships, methods, and attributes is presented. 
    more » « less
  3. Conceptual diagrams are used extensively to understand abstract relationships, explain complex ideas, and solve difficult problems. To illustrate concepts effectively, experts find appropriate visual representations and translate concepts into concrete shapes. This translation step is not supported explicitly by current diagramming tools. This paper investigates how domain experts create conceptual diagrams via semi-structured interviews with 18 participants from diverse backgrounds. Our participants create, adapt, and reuse visual representations using both sketches and digital tools. However, they had trouble using current diagramming tools to transition from sketches and reuse components from earlier diagrams. Our participants also expressed frustration with the slow feedback cycles and barriers to automation of their tools. Based on these results, we suggest four opportunities of diagramming tools — exploration support, representation salience, live engagement, and vocabulary correspondence — that together enable a natural diagramming experience. Finally, we discuss possibilities to leverage recent research advances to develop natural diagramming tools. 
    more » « less
  4. de Vries, E.; Hod, Y.; Ahn, J. (Ed.)
    Research has shown that tape diagrams are beneficial for algebra learning. However, it is unclear whether certain visual features of tape diagrams have implications for learning. We investigated, with undergraduate students and math teachers, whether tape diagrams with different visual features (color, presence of outer lines, and position of the constant) differentially support reasoning about equations and whether people have preferences for certain visual features. Variations in visual features did not affect students’ or teachers’ reasoning accuracy; but each group displayed systematic preferences for most visual features considered. Future research should examine the effects of these visual features on performance while solving equations. 
    more » « less
  5. de Vries, E.; Hod, Y.; Ahn, J. (Ed.)
    Research has shown that tape diagrams are beneficial for algebra learning. However, it is unclear whether certain visual features of tape diagrams have implications for learning. We investigated, with undergraduate students and math teachers, whether tape diagrams with different visual features (color, presence of outer lines, and position of the constant) differentially support reasoning about equations and whether people have preferences for certain visual features. Variations in visual features did not affect students’ or teachers’ reasoning accuracy; but each group displayed systematic preferences for most visual features considered. Future research should examine the effects of these visual features on performance while solving equations. 
    more » « less