skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 16, 2025

Title: Language-guided World Models: A Model-based Approach to AI Control
This paper introduces the concept of Language- Guided World Models (LWMs)—probabilistic models that can simulate environments by read- ing texts. Agents equipped with these models provide humans with more extensive and effi- cient control, allowing them to simultaneously alter agent behaviors in multiple tasks via nat- ural verbal communication. In this work, we take initial steps in developing robust LWMs that can generalize to compositionally novel language descriptions. We design a challenging world modeling benchmark based on the game of MESSENGER (Hanjie et al., 2021), featuring evaluation settings that require varying degrees of compositional generalization. Our exper- iments reveal the lack of generalizability of the state-of-the-art Transformer model, as it of- fers marginal improvements in simulation qual- ity over a no-text baseline. We devise a more robust model by fusing the Transformer with the EMMA attention mechanism (Hanjie et al., 2021). Our model substantially outperforms the Transformer and approaches the perfor- mance of a model with an oracle semantic pars- ing and grounding capability. To demonstrate the practicality of this model in improving AI safety and transparency, we simulate a scenario in which the model enables an agent to present plans to a human before execution, and to re- vise plans based on their language feedback.  more » « less
Award ID(s):
2107048
PAR ID:
10542083
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACL 2024 Workshop SpLU-RoboNLP
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large language models such as GPT-3 (Brown et al., 2020) can perform arbitrary tasks without undergoing fine-tuning after being prompted with only a few labeled examples. An arbitrary task can be reformulated as a natural language prompt, and a language model can be asked to generate the completion, indirectly performing the task in a paradigm known as prompt-based learning. To date, emergent prompt-based learning capabilities have mainly been demonstrated for unidirectional language models. However, bidirectional language models pre-trained on denoising objectives such as masked language modeling produce stronger learned representations for transfer learning. This motivates the possibility of prompting bidirectional models, but their pre-training objectives have made them largely incompatible with the existing prompting paradigm. We present SAP (Sequential Autoregressive Prompting), a technique that enables the prompting of bidirectional models. Utilizing the machine translation task as a case study, we prompt the bidirectional mT5 model (Xue et al., 2021) with SAP and demonstrate its few-shot and zero-shot translations outperform the few-shot translations of unidirectional models like GPT-3 and XGLM (Lin et al., 2021), despite mT5's approximately 50% fewer parameters. We further show SAP is effective on question answering and summarization. For the first time, our results demonstrate prompt-based learning is an emergent property of a broader class of language models, rather than only unidirectional models. 
    more » « less
  2. Abstract This work presents a linguistic analysis into why larger Transformer-based pre-trained language models with more parameters and lower perplexity nonetheless yield surprisal estimates that are less predictive of human reading times. First, regression analyses show a strictly monotonic, positive log-linear relationship between perplexity and fit to reading times for the more recently released five GPT-Neo variants and eight OPT variants on two separate datasets, replicating earlier results limited to just GPT-2 (Oh et al., 2022). Subsequently, analysis of residual errors reveals a systematic deviation of the larger variants, such as underpredicting reading times of named entities and making compensatory overpredictions for reading times of function words such as modals and conjunctions. These results suggest that the propensity of larger Transformer-based models to ‘memorize’ sequences during training makes their surprisal estimates diverge from humanlike expectations, which warrants caution in using pre-trained language models to study human language processing. 
    more » « less
  3. his work-in-progress paper expands on a collaboration between engineering education researchers and machine learning researchers to automate the analysis of written responses to conceptually challenging questions in statics and dynamics courses (Authors, 2022). Using the Concept Warehouse (Koretsky et al., 2014), written justifications of ConcepTests (CTs) were gathered from statics and dynamics courses in a diverse set of two- and four-year institutions. Written justifications for CTs have been used to support active learning pedagogies which makes them important to investigate how students put together their problem-solving narratives of understanding. However, despite the large benefit that analysis of student written responses may provide to instructors and researchers, manual review of responses is cumbersome, limits analysis, and can be prone to human bias. In efforts to improve the analysis of student written responses, machine learning has been used in various educational contexts to analyze short and long texts (Burstein et al., 2020; Burstein et al., 2021). Natural Language Processing (NLP) uses transformer-based machine learning models (Brown et al., 2020; Raffel et al., 2019) which can be used through fine-tuning or in-context learning methods. NLP can be used to train algorithms that can automate the coding of written responses. Only a few studies for educational applications have leveraged transformer-based machine learning models further prompting an investigation into its use in STEM education. However, work in NLP has been criticized for heightening the possibility to perpetuate and even amplify harmful stereotypes and implicit biases (Chang et al., 2019; Mayfield et al., 2019). In this study, we detail the aim to use NLP for linguistic justice. Using methods like text summary, topic modeling, and text classification, we identify key aspects of student narratives of understanding in written responses to mechanics and statics CTs. Through this process, we seek to use machine learning to identify different ways students talk about a problem and their understanding at any point in their narrative formation process. Thus, we hope to help reduce human bias in the classroom and through technology by giving instructors and researchers a diverse set of narratives that include insight into their students’ histories, identities, and understanding. These can then be used towards connecting technological knowledge to students’ everyday lives. 
    more » « less
  4. One way to interpret the reasoning power of transformer-based language models is to describe the types of logical rules they can resolve over some input text. Recently, Chiang et al. (2023) showed that finite-precision transformers can be equivalently expressed in a generalization of first-order logic. However, finite-precision transformers are a weak transformer variant because, as we show, a single head can only attend to a constant number of tokens and, in particular, cannot represent uniform attention. Since attending broadly is a core capability for transformers, we ask whether a minimally more expressive model that can attend universally can also be characterized in logic. To this end, we analyze transformers whose forward pass is computed in logn precision on contexts of length n. We prove that any log-precision transformer can be equivalently expressed as a first-order logic sentence that, in addition to standard universal and existential quantifiers, may also contain majority-vote quantifiers. This is the tightest known upper bound and first logical characterization of log-precision transformers. 
    more » « less
  5. With the widespread adoption of the Next Generation Science Standards (NGSS), science teachers and online learning environments face the challenge of evaluating students' integration of different dimensions of science learning. Recent advances in representation learning in natural language processing have proven effective across many natural language processing tasks, but a rigorous evaluation of the relative merits of these methods for scoring complex constructed response formative assessments has not previously been carried out. We present a detailed empirical investigation of feature-based, recurrent neural network, and pre-trained transformer models on scoring content in real-world formative assessment data. We demonstrate that recent neural methods can rival or exceed the performance of feature-based methods. We also provide evidence that different classes of neural models take advantage of different learning cues, and pre-trained transformer models may be more robust to spurious, dataset-specific learning cues, better reflecting scoring rubrics. 
    more » « less