Our muscles are the primary means through which we affect the external world, and the sense of agency (SoA) over the action through those muscles is fundamental to our self-awareness. However, SoA research to date has focused almost exclusively on agency over action outcomes rather than over the musculature itself, as it was believed that SoA over the musculature could not be manipulated directly. Drawing on methods from human–computer interaction and adaptive experimentation, we use human-in-the-loop Bayesian optimization to tune the timing of electrical muscle stimulation so as to robustly elicit a SoA over electrically actuated muscle movements in male and female human subjects. We use time-resolved decoding of subjects' EEG to estimate the time course of neural activity which predicts reported agency on a trial-by-trial basis. Like paradigms which assess SoA over action consequences, we found that the late (post-conscious) neural activity predicts SoA. Unlike typical paradigms, however, we also find patterns of early (sensorimotor) activity with distinct temporal dynamics predicts agency over muscle movements, suggesting that the “neural correlates of agency” may depend on the level of abstraction (i.e., direct sensorimotor feedback versus downstream consequences) most relevant to a given agency judgment. Moreover, fractal analysis of the EEG suggests that SoA-contingent dynamics of neural activity may modulate the sensitivity of the motor system to external input.
This content will become publicly available on July 24, 2025
Every movement requires the nervous system to solve a complex biomechanical control problem, but this process is mostly veiled from one's conscious awareness. Simultaneously, we also have conscious experience of controlling our movements - our sense of agency (SoA). Whether SoA corresponds to those neural representations that implement actual neuromuscular control is an open question with ethical, medical, and legal implications. If SoA is the conscious experience of control, this predicts that SoA can be decoded from the same brain structures that implement the so-called inverse kinematic computations for planning movement. We correlated human fMRI measurements during hand movements with the internal representations of a deep neural network (DNN) performing the same hand control task in a biomechanical simulation - revealing detailed cortical encodings of sensorimotor states, idiosyncratic to each subject. We then manipulated SoA by usurping control of participants' muscles via electrical stimulation, and found that the same voxels which were best explained by modeled inverse kinematic representations - which, strikingly, were located in canonically visual areas - also predicted SoA. Importantly, model-brain correspondences and robust SoA decoding could both be achieved within single subjects, enabling relationships between motor representations and awareness to be studied at the level of the individual.
more » « less- Award ID(s):
- 2024923
- PAR ID:
- 10542110
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
SIGNIFICANCE STATEMENT The sense of agency, the feeling of “I did that,” when directing one's own musculature is a core feature of human experience. We show that we can robustly manipulate the sense of agency over electrically actuated muscle movements, and we investigate the time course of neural activity that predicts the sense of agency over these actuated movements. We find evidence of two distinct neural processes: a transient sequence of patterns that begins in the early sensorineural response to muscle stimulation and a later, sustained signature of agency. These results shed light on the neural mechanisms by which we experience our movements as volitional. -
Brain-machine interfaces (BMIs) have become increasingly popular in restoring the lost motor function in individuals with disabilities. Several research studies suggest that the CNS may employ synergies or movement primitives to reduce the complexity of control rather than controlling each DoF independently, and the synergies can be used as an optimal control mechanism by the CNS in simplifying and achieving complex movements. Our group has previously demonstrated neural decoding of synergy-based hand movements and used synergies effectively in driving hand exoskeletons. In this study, ten healthy right-handed participants were asked to perform six types of hand grasps representative of the activities of daily living while their neural activities were recorded using electroencephalography (EEG). From half of the participants, hand kinematic synergies were derived, and a neural decoder was developed, based on the correlation between hand synergies and corresponding cortical activity, using multivariate linear regression. Using the synergies and the neural decoder derived from the first half of the participants and only cortical activities from the remaining half of the participants, their hand kinematics were reconstructed with an average accuracy above 70%. Potential applications of synergy-based BMIs for controlling assistive devices in individuals with upper limb motor deficits, implications of the results in individuals with stroke and the limitations of the study were discussed.more » « less
-
Latash, Mark L. (Ed.)This chapter reviews major principles of neural control of movement proposed by N. A. Bernstein based on his biomechanical studies of human movements and published in his 1947 book ‘On Construction of Movements’. These principles include the hierarchical organization of the motor control system; synergistic sensorimotor control; the principle of sensory corrections, and the principles of repetition without repetition and fixating and subsequent releasing kinematic degrees of freedom during motor skill acquisition. These principles simplify control of the musculoskeletal system with redundant degrees of freedom and unpredictable effects of reactive and muscle forces arising in multi-segment kinematic chains. We also discuss the relevant contemporary research that has been inspired by and further developed Bernstein’s ideas. We demonstrate, in particular, examples of complex muscle and kinematic synergies organized by different levels of the motor control system, consequences of loss of proprioceptive sensory corrections on movement coordination, and emergence of economical and stable kinematic and muscle invariant movement characteristics in the process of skill acquisition by trials and errors. We conclude this chapter with motor control related parables told by N. A. Bernstein to one of the authors (VMZ).more » « less
-
Hand gestures are a natural and intuitive form of communication, and integrating this communication method into robotic systems presents significant potential to improve human-robot collaboration. Recent advances in motor neuroscience have focused on replicating human hand movements from synergies also known as movement primitives. Synergies, fundamental building blocks of movement, serve as a potential strategy adapted by the central nervous system to generate and control movements. Identifying how synergies contribute to movement can help in dexterous control of robotics, exoskeletons, prosthetics and extend its applications to rehabilitation. In this paper, 33 static hand gestures were recorded through a single RGB camera and identified in real-time through the MediaPipe framework as participants made various postures with their dominant hand. Assuming an open palm as initial posture, uniform joint angular velocities were obtained from all these gestures. By applying a dimensionality reduction method, kinematic synergies were obtained from these joint angular velocities. Kinematic synergies that explain 98% of variance of movements were utilized to reconstruct new hand gestures using convex optimization. Reconstructed hand gestures and selected kinematic synergies were translated onto a humanoid robot, Mitra, in real-time, as the participants demonstrated various hand gestures. The results showed that by using only few kinematic synergies it is possible to generate various hand gestures, with 95.7% accuracy. Furthermore, utilizing low-dimensional synergies in control of high dimensional end effectors holds promise to enable near-natural human-robot collaboration.
-
While the study of unconstrained movements has revealed important features of neural control, generalizing those insights to more sophisticated object manipulation is challenging. Humans excel at physical interaction with objects, even when those objects introduce complex dynamics and kinematic constraints. This study examined humans turning a horizontal planar crank (radius 10.29 cm) at their preferred and three instructed speeds (with visual feedback), both in clockwise and counterclockwise directions. To explore the role of neuromechanical dynamics, the instructed speeds covered a wide range: fast (near the limits of performance), medium (near preferred speed), and very slow (rendering dynamic effects negligible). Because kinematically constrained movements involve significant physical interaction, disentangling neural control from the influences of biomechanics presents a challenge. To address it, we modeled the interactive dynamics to “subtract off” peripheral biomechanics from observed force and kinematic data, thereby estimating aspects of underlying neural action that may be expressed in terms of motion. We demonstrate the value of this method: remarkably, an approximately elliptical path emerged, and speed minima coincided with curvature maxima, similar to what is seen in unconstrained movements, even though the hand moved at nearly constant speed along a constant-curvature path. These findings suggest that the neural controller takes advantage of peripheral biomechanics to simplify physical interaction. As a result, patterns seen in unconstrained movements persist even when physical interaction prevents their expression in hand kinematics. The reemergence of a speed-curvature relation indicates that it is due, at least in part, to neural processes that emphasize smoothness and predictability. NEW & NOTEWORTHY Physically interacting with kinematic constraints is commonplace in everyday actions. We report a study of humans turning a crank, a circular constraint that imposes constant hand path curvature and hence should suppress variations of hand speed due to the power-law speed-curvature relation widely reported for unconstrained motions. Remarkably, we found that, when peripheral biomechanical factors are removed, a speed-curvature relation reemerges, indicating that it is, at least in part, of neural origin.more » « less