Our recent work demonstrates a correlation between the high-velocity blue edge, vedge, of the ironpeak Fe/Co/Ni H-band emission feature and the optical light curve shape of normal, transitional and sub-luminous type Ia Supernovae (SNe Ia). We explain this correlation in terms of SN Ia physics. vedge corresponds to the sharp transition between the complete and incomplete silicon burning regions in the ejecta. It measures the point in velocity space where the outer 56Ni mass fraction, XNi, falls to the order of 0.03-0.10. For a given 56Ni mass, M(56Ni), vedge is sensitive to the speci c kinetic energy Ekin(M(56Ni)=MWD) of the corresponding region. Combining vedge with light curve parameters (i.e., sBV , m15;s in B and V ) allows us to distinguish between explosion scenarios. The correlation between vedge and light-curve shape is consistent with explosion models near the Chandrasekhar limit. However, the available sub-MCh WD explosion model based on SN 1999by exhibits velocities which are too large to explain the observations. Finally, the sub-luminous SN 2015bo exhibits signatures of a dynamical merger of two WDs demonstrating diversity among explosion scenarios at the faint end of the SNe Ia population.
more »
« less
This content will become publicly available on September 1, 2025
Ejecta Masses in Type Ia Supernovae—Implications for the Progenitor and the Explosion Scenario*
Abstract The progenitor system(s) as well as the explosion mechanism(s) of thermonuclear (Type Ia) supernovae are long-standing issues in astrophysics. Here we present ejecta masses and other physical parameters for 28 recent Type Ia supernovae inferred from multiband photometric and optical spectroscopic data. Our results confirm that the majority of SNe Ia showobservableejecta masses below the Chandrasekhar-limit (having a meanMej≈ 1.1 ± 0.3M⊙), consistent with the predictions of recent sub-MChexplosion models. They are compatible with models assuming either single- or double-degenerate progenitor configurations. We also recover a sub-sample of supernovae within 1.2M⊙<Mej< 1.5M⊙that are consistent with near-Chandrasekhar explosions. Taking into account the uncertainties of the inferred ejecta masses, about half of our SNe are compatible with both explosion models. We compare our results with those in previous studies, and discuss the caveats and concerns regarding the applied methodology.
more »
« less
- PAR ID:
- 10542355
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- PASP
- Date Published:
- Journal Name:
- Publications of the Astronomical Society of the Pacific
- Volume:
- 136
- Issue:
- 9
- ISSN:
- 0004-6280
- Page Range / eLocation ID:
- 094201
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground- and space-based follow-up campaign to characterize SN 2022pul, a super-Chandrasekhar mass SN Ia (alternatively “03fg-like” SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon–oxygen (C/O)-rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (MB= −18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peakB-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [Oi]λλ6300, 6364 (FWHM ≈ 2000 km s−1), strong, broad emission from [Caii]λλ7291, 7323 (FWHM ≈ 7300 km s−1), and a rapid Feiiito Feiiionization change. Finally, we present the first ever optical-to-MIR nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (withT≈ 500 K), combined with prominent [Oi] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within C/O-rich CSM.more » « less
-
ABSTRACT Double detonations of sub-Chandrasekhar mass white dwarfs are a promising explosion scenario for Type Ia supernovae, whereby a detonation in a surface helium shell triggers a secondary detonation in a carbon-oxygen core. Recent work has shown that low-mass helium shell models reproduce observations of normal SNe Ia. We present 3D radiative transfer simulations for a suite of 3D simulations of the double detonation explosion scenario for a range of shell and core masses. We find light curves broadly able to reproduce the faint end of the width–luminosity relation shown by SNe Ia, however, we find that all of our models show extremely red colours, not observed in normal SNe Ia. This includes our lowest mass helium shell model. We find clear Ti ii absorption features in the model spectra, which would lead to classification as peculiar SNe Ia, as well as line blanketing in some lines of sight by singly ionized Cr and Fe-peak elements. Our radiative transfer simulations show that these explosion models remain promising to explain peculiar SNe Ia. Future full non-LTE simulations may improve the agreement of these explosion models with observations of normal SNe Ia.more » « less
-
Abstract Type Ia supernovae (SNe Ia) may originate from a wide variety of explosion scenarios and progenitor channels. They exhibit a factor of ≈10 difference in brightness and thus a differentiation in the mass of 56 Ni → 56 Co → 56 Fe. We present a study on the fate of positrons within SNe Ia in order to evaluate their escape fractions and energy spectra. Our detailed Monte Carlo transport simulations for positrons and γ -rays include both β + decay of 56 Co and pair production. We simulate a wide variety of explosion scenarios, including the explosion of white dwarfs (WDs) close to the Chandrasekhar mass ( M Ch ), He-triggered explosions of sub- M Ch WDs, and dynamical mergers of two WDs. For each model, we study the influence of the size and morphology of the progenitor magnetic field between 1 and 10 13 G. Population synthesis based on the observed brightness distribution of SNe Ia was used to estimate the overall contributions to Galactic positrons due to escape from SNe Ia. We find that this is dominated by SNe Ia of normal brightness, where variations in the distribution of emitted positrons are small. We estimate a total SNe Ia contribution to Galactic positrons of <2% and, depending on the magnetic field morphology, <6–20% for M Ch and sub- M Ch , respectively.more » « less
-
Abstract Eruptive mass loss of massive stars prior to supernova (SN) explosion is key to understanding their evolution and end fate. An observational signature of pre-SN mass loss is the detection of an early, short-lived peak prior to the radioactive-powered peak in the lightcurve of the SN. This is usually attributed to the SN shock passing through an extended envelope or circumstellar medium. Such an early peak is common for double-peaked Type IIb SNe with an extended hydrogen envelope but uncommon for normal Type Ibc SNe with very compact progenitors. In this paper, we systematically study a sample of 14 double-peaked Type Ibc SNe out of 475 Type Ibc SNe detected by the Zwicky Transient Facility. The rate of these events is ∼3%–9% of Type Ibc SNe. A strong correlation is seen between the peak brightness of the first and the second peak. We perform a holistic analysis of this sample’s photometric and spectroscopic properties. We find that six SNe have ejecta mass less than 1.5M⊙. Based on the nebular spectra and lightcurve properties, we estimate that the progenitor masses for these are less than ∼12M⊙. The rest have an ejecta mass >2.4M⊙and a higher progenitor mass. This sample suggests that the SNe with low progenitor masses undergo late-time binary mass transfer. Meanwhile, the SNe with higher progenitor masses are consistent with wave-driven mass loss or pulsation-pair instability-driven mass-loss simulations.more » « less