skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Weis-Fogh Number Describes Resonant Performance Tradeoffs in Flapping Insects
Synopsis Dimensionless numbers have long been used in comparative biomechanics to quantify competing scaling relationships and connect morphology to animal performance. While common in aerodynamics, few relate the biomechanics of the organism to the forces produced on the environment during flight. We discuss the Weis-Fogh number, N, as a dimensionless number specific to flapping flight, which describes the resonant properties of an insect and resulting tradeoffs between energetics and control. Originally defined by Torkel Weis-Fogh in his seminal 1973 paper, N measures the ratio of peak inertial to aerodynamic torque generated by an insect over a wingbeat. In this perspectives piece, we define N for comparative biologists and describe its interpretations as a ratio of torques and as the width of an insect’s resonance curve. We then discuss the range of N realized by insects and explain the fundamental tradeoffs between an insect’s aerodynamic efficiency, stability, and responsiveness that arise as a consequence of variation in N, both across and within species. N is therefore an especially useful quantity for comparative approaches to the role of mechanics and aerodynamics in insect flight.  more » « less
Award ID(s):
2100858 1806833 1554790 2310741 2326924
PAR ID:
10542411
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative And Comparative Biology
Volume:
64
Issue:
2
ISSN:
1540-7063
Format(s):
Medium: X Size: p. 632-643
Size(s):
p. 632-643
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Miniature insects must overcome significant viscous resistance in order to fly. They typically possess wings with long bristles on the fringes and use a clap-and-fling mechanism to augment lift. These unique solutions to the extreme conditions of flight at tiny sizes (<2 mm body length) suggest that natural selection has optimized wing design for better aerodynamic performance. However, species vary in wingspan, number of bristles (n) and bristle gap (G) to diameter (D) ratio (G/D). How this variation relates to body length (BL) and its effects on aerodynamics remain unknown. We measured forewing images of 38 species of thrips and 21 species of fairyflies. Our phylogenetic comparative analyses showed that n and wingspan scaled positively and similarly with BL across both groups, whereas G/D decreased with BL, with a sharper decline in thrips. We next measured aerodynamic forces and visualized flow on physical models of bristled wings performing clap-and-fling kinematics at a chord-based Reynolds number of 10 using a dynamically scaled robotic platform. We examined the effects of dimensional (G, D, wingspan) and non-dimensional (n, G/D) geometric variables on dimensionless lift and drag. We found that: (1) increasing G reduced drag more than decreasing D; (2) changing n had minimal impact on lift generation; and (3) varying G/D minimally affected aerodynamic forces. These aerodynamic results suggest little pressure to functionally optimize n and G/D. Combined with the scaling relationships between wing variables and BL, much wing variation in tiny flying insects might be best explained by underlying shared growth factors. 
    more » « less
  2. An insect’s wingbeat frequency is a critical determinant of its flight performance and varies by multiple orders of magnitude across Insecta. Despite potential energetic benefits for an insect that matches its wingbeat frequency to its resonant frequency, recent work has shown that moths may operate off their resonant peak. We hypothesized that across species, wingbeat frequency scales with resonance frequency to maintain favourable energetics, but with an offset in species that use frequency modulation as a means of flight control. The moth superfamily Bombycoidea is ideal for testing this hypothesis because their wingbeat frequencies vary across species by an order of magnitude, despite similar morphology and actuation. We used materials testing, high-speed videography and a model of resonant aerodynamics to determine how components of an insect’s flight apparatus (stiffness, wing inertia, muscle strain and aerodynamics) vary with wingbeat frequency. We find that the resonant frequency of a moth correlates with wingbeat frequency, but resonance curve shape (described by the Weis-Fogh number) and peak location vary within the clade in a way that corresponds to frequency-dependent biomechanical demands. Our results demonstrate that a suite of adaptations in muscle, exoskeleton and wing drive variation in resonant mechanics, reflecting potential constraints on matching wingbeat and resonant frequencies. 
    more » « less
  3. An insect’s wingbeat frequency is a critical determinant of its flight performance and varies by multiple orders of magnitude across Insecta. Despite potential energetic benefits for an insect that matches its wingbeat frequency to its resonant frequency, recent work has shown that moths may operate off their resonant peak. We hypothesized that across species, wingbeat frequency scales with resonance frequency to maintain favourable energetics, but with an offset in species that use frequency modulation as a means of flight control. The moth superfamily Bombycoidea is ideal for testing this hypothesis because their wingbeat frequencies vary across species by an order of magnitude, despite similar morphology and actuation. We used materials testing, high-speed videography and a model of resonant aerodynamics to determine how components of an insect’s flight apparatus (stiffness, wing inertia, muscle strain and aerodynamics) vary with wingbeat frequency. We find that the resonant frequency of a moth correlates with wingbeat frequency, but resonance curve shape (described by the Weis-Fogh number) and peak location vary within the clade in a way that corresponds to frequencydependent biomechanical demands. Our results demonstrate that a suite of adaptations in muscle, exoskeleton and wing drive variation in resonant mechanics, reflecting potential constraints on matching wingbeat and resonant frequencies. 
    more » « less
  4. Synopsis Insects must fly in highly variable natural environments filled with gusts, vortices, and other transient aerodynamic phenomena that challenge flight stability. Furthermore, the aerodynamic forces that support insect flight are produced from rapidly oscillating wings of time-varying orientation and configuration. The instantaneous flight forces produced by these wings are large relative to the average forces supporting body weight. The magnitude of these forces and their time-varying direction add another challenge to flight stability, because even proportionally small asymmetries in timing or magnitude between the left and right wings may be sufficient to produce large changes in body orientation. However, these same large-magnitude oscillating forces also offer an opportunity for unexpected flight stability through nonlinear interactions between body orientation, body oscillation in response to time-varying inertial and aerodynamic forces, and the oscillating wings themselves. Understanding the emergent stability properties of flying insects is a crucial step toward understanding the requirements for evolution of flapping flight and decoding the role of sensory feedback in flight control. Here, we provide a brief review of insect flight stability, with some emphasis on stability effects brought about by oscillating wings, and present some preliminary experimental data probing some aspects of flight stability in free-flying insects. 
    more » « less
  5. null (Ed.)
    Flapping-wing insects, birds and robots are thought to offset the high power cost of oscillatory wing motion by using elastic elements for energy storage and return. Insects possess highly resilient elastic regions in their flight anatomy that may enable high dynamic efficiency. However, recent experiments highlight losses due to damping in the insect thorax that could reduce the benefit of those elastic elements. We performed experiments on, and simulations of, a dynamically scaled robophysical flapping model with an elastic element and biologically relevant structural damping to elucidate the roles of body mechanics, aerodynamics and actuation in spring-wing energetics. We measured oscillatory flapping-wing dynamics and energetics subject to a range of actuation parameters, system inertia and spring elasticity. To generalize these results, we derive the non-dimensional spring-wing equation of motion and present variables that describe the resonance properties of flapping systems: N , a measure of the relative influence of inertia and aerodynamics, and K ^ , the reduced stiffness. We show that internal damping scales with N , revealing that dynamic efficiency monotonically decreases with increasing N . Based on these results, we introduce a general framework for understanding the roles of internal damping, aerodynamic and inertial forces, and elastic structures within all spring-wing systems. 
    more » « less