Insects are possibly the most taxonomically and ecologically diverse class of multicellular organisms on Earth. Consequently, they provide nearly unlimited opportunities to develop and test ecological and evolutionary hypotheses. Currently, however, large-scale studies of insect ecology, behavior, and trait evolution are impeded by the difficulty in obtaining and analyzing data derived from natural history observations of insects. These data are typically highly heterogeneous and widely scattered among many sources, which makes developing robust information systems to aggregate and disseminate them a significant challenge. As a step towards this goal, we report initial results of a new effort to develop a standardized vocabulary and ontology for insect natural history data. In particular, we describe a new database of representative insect natural history data derived from multiple sources (but focused on data from specimens in biological collections), an analysis of the abstract conceptual areas required for a comprehensive ontology of insect natural history data, and a database of use cases and competency questions to guide the development of data systems for insect natural history data. We also discuss data modeling and technology-related challenges that must be overcome to implement robust integration of insect natural history data. 
                        more » 
                        « less   
                    
                            
                            Insect Flight: State of the Field and Future Directions
                        
                    
    
            Synopsis The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight. Here, we revisit this history from an interdisciplinary perspective, discussing recent discoveries regarding the developmental origins, physiology, biomechanics, and neurobiology and sensory control of flight in a diverse set of insect models. We also identify major outstanding questions yet to be addressed and provide recommendations for overcoming current methodological challenges faced when studying insect flight, which will allow the field to continue to move forward in new and exciting directions. By integrating mechanistic work into ecological and evolutionary contexts, we hope that this synthesis promotes and stimulates new interdisciplinary research efforts necessary to close the many existing gaps about the causes and consequences of insect flight evolution. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10542431
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative And Comparative Biology
- Volume:
- 64
- Issue:
- 2
- ISSN:
- 1540-7063
- Format(s):
- Medium: X Size: p. 533-555
- Size(s):
- p. 533-555
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Since taking flight, insects have undergone repeated evolutionary transitions between two seemingly distinct flight modes1–3. Some insects neurally activate their muscles synchronously with each wingstroke. However, many insects have achieved wingbeat frequencies beyond the speed limit of typical neuromuscular systems by evolving flight muscles that are asynchronous with neural activation and activate in response to mechanical stretch2–8. These modes reflect the two fundamental ways of generating rhythmic movement: time-periodic forcing versus emergent oscillations from self-excitation8–10. How repeated evolutionary transitions have occurred and what governs the switching between these distinct modes remain unknown. Here we find that, despite widespread asynchronous actuation in insects across the phylogeny3,6, asynchrony probably evolved only once at the order level, with many reversions to the ancestral, synchronous mode. A synchronous moth species, evolved from an asynchronous ancestor, still preserves the stretch-activated muscle physiology. Numerical and robophysical analyses of a unified biophysical framework reveal that rather than a dichotomy, these two modes are two regimes of the same dynamics. Insects can transition between flight modes across a bridge in physiological parameter space. Finally, we integrate these two actuation modes into an insect-scale robot11–13that enables transitions between modes and unlocks a new self-excited wingstroke strategy for engineered flight. Together, this framework accounts for repeated transitions in insect flight evolution and shows how flight modes can flip with changes in physiological parameters.more » « less
- 
            In the last decade, roboticists have had significant success building centimeter-scale flapping wing micro aerial vehicles (FWMAVs) inspired by the flight of insects. Evidence suggests that insects store and release energy in the thoracic exoskeleton to improve energy efficiency by flapping at resonance. Insect-inspired micro flying robots have also leveraged resonance to improve efficiency, but they have discovered that operating at the resonant frequency leads to issues with flight control. This research seeks to investigate the roles that elasticity, aerodynamics, and muscle dynamics play in the emergent dynamics of flapping flight by studying elastic flapping spring-wing systems using dynamically-scaled robophysical models of springwings. Studying the dynamics of a robot with comparable features enables the validation of models from biology that are otherwise difficult to test in living insects, the generation of new hypotheses, and the development of novel FWMAV designs. In Chapter 1, the spring-wing system is characterized via a nonlinear spring-mass-damper model. A robophysical model validates that such systems gain energetic benefits from operating at resonance, but reveals that the benefit scales with an underappreciated dimensionless ratio of inertial to aerodynamic forces, the Weis-Fogh number. We show through dimensional analysis that any real system, living or robotic, must balance the mechanical advantage gained from operating at resonance with diminishing returns in efficiency. Chapter 2 further explores the impact of the Weis-Fogh number on flapping dynamics, showing that responsiveness to control inputs is reduced and resistance to environmental perturbations is increased as the dimensionless ratio increases. Together with calculations of Weis-Fogh number in insects, these studies illustrate tradeoffs that drive evolution of resonant flight in nature and guide development of future FWMAVs with elastic energy exchange. In the second half of the thesis, muscle dynamics are introduced in the form of a simplified model of self-excited asynchronous insect muscle. In Chapter 3, a form of velocity feedback, adapted from experiments on insect flight muscle, is developed and integrated with the springwing model, producing a system that generates steady flapping via limit-cycle oscillations despite the absence of periodic control inputs. The model is explored analytically, in simulation, and via implementation on the robotic spring-wing. Novel dynamic characteristics that enable adaptation to damage and passive response to wing collisions are described. Chapter 4 leverages the asynchronous feedback model as part of an interdisciplinary study of the evolution of asynchronous muscle. Phylogenetic analysis, direct measurement of insect muscle dynamics, and experiments on the robophysical system show that evolutionary transitions between periodicallyforced and self-excited insect muscle were likely made possible by a ”bridge” in the dynamic parameter space that could be traversed under specific conditions. The asynchronous spring-wing model provides new insight into the flight and evolution of some of the most agile insects in nature, and presents a novel adaptive control scheme for future FWMAVs.more » « less
- 
            Synopsis Flying insects vary greatly in body size and wing proportions, significantly impacting their flight energetics. Generally, the larger the insect, the slower its flight wingbeat frequency. However, variation in frequency is also explained by differences in wing proportions, where larger-winged insects tend to have lower frequencies. These associations affect the energy required for flight. The correlated evolution of flight form and function can be further defined using a lineage of closely related bee species varying in body mass. The decline in flight wingbeat frequency with increasing size is paralleled by the flight mass-specific metabolic rate. The specific scaling exponents observed can be predicted from the wing area allometry, where a greater increase (hyperallometry) leads to a more pronounced effect on flight energetics, and hypoallometry can lead to no change in frequency and metabolic rate across species. The metabolic properties of the flight muscles also vary with body mass and wing proportions, as observed from the activity of glycolytic enzymes and the phospholipid compositions of muscle tissue, connecting morphological differences with muscle metabolic properties. The evolutionary scaling observed across species is recapitulated within species. The static allometry observed within the bumblebee Bombus impatiens, where the wing area is proportional and isometric, affects wingbeat frequency and metabolic rate, which is predicted to decrease with an increase in size. Intraspecific variation in flight muscle tissue properties is also related to flight metabolic rate. The role of developmental processes and phenotypic plasticity in explaining intraspecific differences is central to our understanding of flight energetics. These studies provide a framework where static allometry observed within species gives rise to evolutionary allometry, connecting the evolution of size, form, and function associated with insect flight.more » « less
- 
            Schultz, Ted R; Gawne, Richard; Peregrine, Peter N (Ed.)Contributors explore common elements in the evolutionary histories of both human and insect agriculture resulting from convergent evolution. During the past 12,000 years, agriculture originated in humans as many as twenty-three times, and during the past 65 million years, agriculture also originated in nonhuman animals at least twenty times and in insects at least fifteen times. It is much more likely that these independent origins represent similar solutions to the challenge of growing food than that they are due purely to chance. This volume seeks to identify common elements in the evolutionary histories of both human and insect agriculture that are the results of convergent evolution. The goal is to create a new, synthetic field that characterizes, quantifies, and empirically documents the evolutionary and ecological mechanisms that drive both human and nonhuman agriculture. The contributors report on the results of quantitative analyses comparing human and nonhuman agriculture; discuss evolutionary conflicts of interest between and among farmers and cultivars and how they interfere with efficiencies of agricultural symbiosis; describe in detail agriculture in termites, ambrosia beetles, and ants; and consider patterns of evolutionary convergence in different aspects of agriculture, comparing fungal parasites of ant agriculture with fungal parasites of human agriculture, analyzing the effects of agriculture on human anatomy, and tracing the similarities and differences between the evolution of agriculture in humans and in a single, relatively well-studied insect group, fungus-farming ants. Contributors Duur K. Aanen, Niels P. R. Anten, Peter H. W. Biedermann, Jacobus J. Boomsma, Laura T. Buck, Guillaume Chomicki, Tim Denham, R. Ford Denison, Dorian Q. Fuller, Richard Gawne, Nicole M. Gerardo, Thomas C. Harrington, Ana Ješovnik, Judith Korb, Chase G. Mayers, George R. McGhee, Kenneth Z. McKenna, Lumila P. Menéndez, Peter N. Peregrine, Ted R. Schultzmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
