skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observations of Compressional Structures Driven by Interaction Between Foreshock Ions and Discontinuities
Abstract The ion foreshock is very dynamic, characterized by various transient structures that can perturb the bow shock and influence the magnetosphere‐ionosphere system. One important driver of foreshock transients is solar wind directional discontinuities (DDs) that demagnetize foreshock ions leading to a local current. If this current decreases the field strength at the DD, a hot flow anomaly (HFA) can form. Recent hybrid simulations found that when the current increases the field strength at the DD, a compressional structure forms with enhanced density and field strength opposite to HFAs. Using MMS and THEMIS observations, we confirm this situation. We demonstrate that the current geometry driven by the foreshock ions plays a critical role in the formation. The initial gyrophase of foreshock ions, due to their specular reflection, determines whether they can cross the DD. When many of the foreshock ions cannot cross the DD and the local current they drive increases the field strength at the DD, the enhanced field strength inhibits more foreshock ions from crossing the DD, further enhancing the local current. This feedback loop promotes the growth of the compressional structure. Such foreshock ion‐driven compressional structures can result in dynamic pressure enhancements in the magnetosheath, leading to magnetosheath jets. Our study enables prediction of the location and formation probability of such compressional structures and their potential geoeffectiveness.  more » « less
Award ID(s):
2247760
PAR ID:
10542499
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
129
Issue:
9
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In the ion foreshock, there are many foreshock transients driven by back streaming foreshock ions. When the foreshock ions interact with tangential discontinuities (TDs), hot flow anomalies form if the foreshock ion‐driven current decreases field strength at TDs, but the opposite situation has been paid little attention. Using 2.5‐D local hybrid simulations, we show that a compressional boundary with enhanced field strength and density can form. We examine how the foreshock ions interact with TDs under various magnetic field geometries to drive currents that lead to compressional boundaries. The current driven by the foreshock ions should peak on its initial side of a TD so that the enhanced field strength at the TD in turn increases this current by keeping more foreshock ions on their initial side. Which side the current peaks can be determined by whether the foreshock ions initially cross the TD and/or how their velocity is projected into the local perpendicular direction. Additionally, the foreshock ion‐driven currents from two sides could compete, and whether a compressional boundary forms is determined by the net current profile. Because such compressive structures in the foreshock can drive magneto sheath jets and cause many geoeffects, it is necessary to fully understand their formation. 
    more » « less
  2. Abstract The ion foreshock is highly dynamic, disturbing the bow shock and the magnetosphere‐ionosphere system. To forecast foreshock‐driven space weather effects, it is necessary to model foreshock ions as a function of upstream shock parameters. Case studies in the accompanying paper show that magnetosheath ions sometimes exhibit strong field‐aligned asymmetry toward the upstream direction, which may be responsible for enhancing magnetosheath leakage and therefore foreshock ion density. To understand the conditions leading to such asymmetry and the potential for enhanced leakage, we perform case studies and a statistical study of magnetosheath and foreshock region data surrounding ∼500 Time History of Events and Macroscale Interactions during Substorms mission bow shock crossings. We quantify the asymmetry using the heat flux along the field‐aligned direction. We show that the strong field‐aligned heat flux persists across the entire magnetosheath from the magnetopause to the bow shock. Ion distribution functions reveal that the strong heat flux is caused by a secondary thermal population. We find that stronger asymmetry events exhibit heat flux preferentially toward the upstream direction near the bow shock and occur under larger IMF strength and larger solar wind dynamic pressure and/or energy flux. Additionally, we show that near the bow shock, magnetosheath leakage is a significant contributor to foreshock ions, and through enhancing the leakage the magnetosheath ion asymmetry can modulate the foreshock ion velocity and density. Our results imply that likely due to field line draping and compression against the magnetopause that leads to a directional mirror force, modeling the foreshock ions necessitates a more global accounting of downstream conditions. 
    more » « less
  3. Abstract The ion foreshock, filled with backstreaming foreshock ions, is very dynamic with many transient structures that disturb the bow shock and the magnetosphere‐ionosphere system. It has been shown that foreshock ions can be generated through either solar wind reflection at the bow shock or leakage from the magnetosheath. While solar wind reflection is widely believed to be the dominant generation process, our investigation using Time History of Events and Macroscale Interactions during Substorms mission observations reveals that the relative importance of magnetosheath leakage has been underestimated. We show from case studies that when the magnetosheath ions exhibit field‐aligned anisotropy, a large fraction of them attains sufficient field‐aligned speed to escape upstream, resulting in very high foreshock ion density. The observed foreshock ion density, velocity, phase space density, and distribution function shape are consistent with such an escape or leakage process. Our results suggest that magnetosheath leakage could be a significant contributor to the formation of the ion foreshock. Further characterization of the magnetosheath leakage process is a critical step toward building predictive models of the ion foreshock, a necessary step to better forecast foreshock‐driven space weather effects. 
    more » « less
  4. Abstract In the ion foreshock, hot flow anomalies (HFAs) and foreshock bubbles (FBs) are two types of foreshock transients that have the strongest fluctuations, which can disturb the magnetosphere‐ionosphere system and increase shock acceleration efficiency. They form due to interaction between the foreshock ions and solar wind discontinuities: the direction of the foreshock ion‐driven current and whether it decreases or increases the magnetic field strength behind the discontinuity determine whether the transient's formation can be promoted or suppressed. Thus, to predict the HFA and FB formation and forecast their space weather effects, it is necessary to predict the foreshock ion‐driven current direction. In this study, we derive analytical equations of foreshock ion velocities within discontinuities to estimate foreshock ion‐driven current direction, which provides a quantitative criterion of HFA and FB formation. To validate the criterion, we use Acceleration Reconnection Turbulence & Electrodynamics of Moon's Interaction with the Sun to observe pristine solar wind discontinuities and calculate discontinuity parameters. We use Magnetospheric Multiscale to observe the foreshock ion motion around the discontinuities and show that the data support our model. This study is another step toward a predictive model of HFA and FB formation so that we can forecast their space weather effects at Earth using solar wind observations at lunar orbit or L1. 
    more » « less
  5. Hot flow anomalies (HFAs) and foreshock bubbles (FBs) are two types of transient phenomena characterized by flow deflected and hot cores bounded by one or two compressional boundaries in the foreshock. Using conjunction observations by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, we present an MHD HFA with a core filled with magnetosheath material around the bow shock and a typical kinetic FB associated with foreshock ions upstream of the bow shock, occurring simultaneously under the same solar wind/interplanetary magnetic field (IMF) conditions. The displacements of the bow shock moving back and forth along the sun-earth line are observed. Electron energy shows enhancements from ∼50 keV in the FB to ∼100 keV in the HFA core, suggesting additional acceleration process across the bow shock within the transient structure. The magnetosheath response of an HFA core-like structure with particle heating and electron acceleration is observed by the Magnetospheric Multiscale (MMS) mission. Ultralow frequency waves in the magnetosphere modulating cold ion energy are identified by THEMIS, driven by these transient structures. Our study improves our understanding of foreshock transients and suggests that single spacecraft observations are insufficient to reveal the whole picture of foreshock transients, leading to an underestimation of their impacts (e.g., particle acceleration energy and spatial scale of disturbances). 
    more » « less