skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Zooming in on what counts as core and auxiliary: A case study on recognition models of visual working memory
Abstract Research on best practices in theory assessment highlights that testing theories is challenging because they inherit a new set of assumptions as soon as they are linked to a specific methodology. In this article, we integrate and build on this work by demonstrating the breadth of these challenges. We show that tracking auxiliary assumptions is difficult because they are made at different stages of theory testing and at multiple levels of a theory. We focus on these issues in a reanalysis of a seminal study and its replications, both of which use a simple working-memory paradigm and a mainstream computational modeling approach. These studies provide the main evidence for “all-or-none” recognition models of visual working memory and are still used as the basis for how to measure performance in popular visual working-memory tasks. In our reanalysis, we find that core practical auxiliary assumptions were unchecked and violated; the original model comparison metrics and data were not diagnostic in several experiments. Furthermore, we find that models were not matched on “theory general” auxiliary assumptions, meaning that the set of tested models was restricted, and not matched in theoretical scope. After testing these auxiliary assumptions and identifying diagnostic testing conditions, we find evidence for the opposite conclusion. That is, continuous resource models outperform all-or-none models. Together, our work demonstrates why tracking and testing auxiliary assumptions remains a fundamental challenge, even in prominent studies led by careful, computationally minded researchers. Our work also serves as a conceptual guide on how to identify and test the gamut of auxiliary assumptions in theory assessment, and we discuss these ideas in the context of contemporary approaches to scientific discovery.  more » « less
Award ID(s):
2146988
PAR ID:
10542727
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Psychonomic Bulletin & Review
Volume:
32
Issue:
2
ISSN:
1069-9384
Format(s):
Medium: X Size: p. 547-569
Size(s):
p. 547-569
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The development of deep convolutional neural networks (CNNs) has recently led to great successes in computer vision and CNNs have become de facto computational models of vision. However, a growing body of work suggests that they exhibit critical limitations beyond image categorization. Here, we study one such fundamental limitation, for judging whether two simultaneously presented items are the same or different (SD) compared to a baseline assessment of their spatial relationship (SR). In both human subjects and artificial neural networks, we test the prediction that SD tasks recruit additional cortical mechanisms which underlie critical aspects of visual cognition that are not explained by current computational models. We thus recorded EEG signals from human participants engaged in the same tasks as the computational models. Importantly, in humans the two tasks were matched in terms of difficulty by an adaptive psychometric procedure: yet, on top of a modulation of evoked potentials, our results revealed higher activity in the low beta (16-24Hz) band in the SD compared to the SR conditions. We surmise that these oscillations reflect the crucial involvement of additional mechanisms, such as working memory and attention, which are missing in current feed-forward CNNs. 
    more » « less
  2. null (Ed.)
    Abstract Almost all models of visual working memory—the cognitive system that holds visual information in an active state—assume it has a fixed capacity: Some models propose a limit of three to four objects, where others propose there is a fixed pool of resources for each basic visual feature. Recent findings, however, suggest that memory performance is improved for real-world objects. What supports these increases in capacity? Here, we test whether the meaningfulness of a stimulus alone influences working memory capacity while controlling for visual complexity and directly assessing the active component of working memory using EEG. Participants remembered ambiguous stimuli that could either be perceived as a face or as meaningless shapes. Participants had higher performance and increased neural delay activity when the memory display consisted of more meaningful stimuli. Critically, by asking participants whether they perceived the stimuli as a face or not, we also show that these increases in visual working memory capacity and recruitment of additional neural resources are because of the subjective perception of the stimulus and thus cannot be driven by physical properties of the stimulus. Broadly, this suggests that the capacity for active storage in visual working memory is not fixed but that more meaningful stimuli recruit additional working memory resources, allowing them to be better remembered. 
    more » « less
  3. Abstract Visual working memory is highly limited, and its capacity is tied to many indices of cognitive function. For this reason, there is much interest in understanding its architecture and the sources of its limited capacity. As part of this research effort, researchers often attempt to decompose visual working memory errors into different kinds of errors, with different origins. One of the most common kinds of memory error is referred to as a “swap,” where people report a value that closely resembles an item that was not probed (e.g., an incorrect, non-target item). This is typically assumed to reflect confusions, like location binding errors, which result in the wrong item being reported. Capturing swap rates reliably and validly is of great importance because it permits researchers to accurately decompose different sources of memory errors and elucidate the processes that give rise to them. Here, we ask whether different visual working memory models yield robust and consistent estimates of swap rates. This is a major gap in the literature because in both empirical and modeling work, researchers measure swaps without motivating their choice of swap model. Therefore, we use extensive parameter recovery simulations with three mainstream swap models to demonstrate how the choice of measurement model can result in very large differences in estimated swap rates. We find that these choices can have major implications for how swap rates are estimated to change across conditions. In particular, each of the three models we consider can lead to differential quantitative and qualitative interpretations of the data. Our work serves as a cautionary note to researchers as well as a guide for model-based measurement of visual working memory processes. 
    more » « less
  4. Visual working memory is traditionally studied using abstract, meaningless stimuli. Although studies using such simplified stimuli have been insightful in understanding the mechanisms of visual working memory, they also potentially limit our ability to understand how people encode and store conceptually rich and meaningful stimuli in the real world. Recent studies have demonstrated that meaningful and familiar visual stimuli that connect to existing knowledge are better remembered than abstract colors or shapes, indicating that meaning can unlock additional working memory capacity. These findings challenge current models of visual working memory and suggest that its capacity is not fixed but depends on the type of information that is being remembered and, in particular, how that information connects to preexisting knowledge. 
    more » « less
  5. null (Ed.)
    Existing knowledge shapes and distorts our memories, serving as a prior for newly encoded information. Here, we investigate the role of stable long-term priors (e.g. categorical knowledge) in conjunction with priors arising from recently encountered information (e.g. ’serial dependence’) in visual working memory for color. We use an iterated reproduction paradigm to allow a model-free assessment of the role of such priors. In Experiment 1, we find that participants’ reports reliably converge to certain areas of color space, but that this convergence is largely distinct for different individuals, suggesting responses are biased by more than just shared category knowledge. In Experiment 2, we explicitly manipulate trial n-1 and find recent history plays a major role in participants’ reports. Thus, we find that both global prior knowledge and recent trial information have biasing influences on visual working memory, demonstrating an important role for both shortand long-term priors in actively maintained information. 
    more » « less