skip to main content


This content will become publicly available on November 4, 2025

Title: CPElide: Efficient Multi-Chiplet GPU Implicit Synchronization
Chiplets are transforming computer system designs, allowing system designers to combine heterogeneous computing resources at unprecedented scales. Breaking larger, monolithic chips into smaller, connected chiplets helps performance continue scaling, avoids die size limitations, improves yield, and reduces design and integration costs. However, chiplet-based designs introduce an additional level of hierarchy, which causes indirection and non-uniformity. This clashes with typical heterogeneous systems: unlike CPU-based multi-chiplet systems, heterogeneous systems do not have significant OS support or complex coherence protocols to mitigate the impact of this indirection. Thus, exploiting locality across application phases is harder in multi-chiplet heterogeneous systems. We propose CPElide, which utilizes information already available in heterogeneous systems’ embedded microprocessor (the command processor) to track inter-chiplet data dependencies and aggressively perform implicit synchronization only when necessary, instead of conservatively like the state-of-the-art HMG. Across 24 workloads CPElide improves average performance (13%, 19%), energy (14%, 11%), and network traffic (14%, 17%), respectively, over current approaches and HMG.  more » « less
Award ID(s):
2238608
PAR ID:
10542855
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Subject(s) / Keyword(s):
GPGPU Chiplets Synchronization Coherence
Format(s):
Medium: X
Location:
IEEE/ACM International Symposium on Microarchitecture (MICRO)
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Heterogeneous systems are commonly used today to sustain the historic benefits we have achieved through technology scaling. 2.5D integration technology provides a cost-effective solution for designing heterogeneous systems. The traditional physical design of a 2.5D heterogeneous system closely packs the chiplets to minimize wirelength, but this leads to a thermally-inefficient design. We propose TAP-2.5D: the first open-source network routing and thermally-aware chiplet placement methodology for heterogeneous 2.5D systems. TAP-2.5D strategically inserts spacing between chiplets to jointly minimize the temperature and total wirelength, and in turn, increases the thermal design power envelope of the overall system. We present three case studies demonstrating the usage and efficacy of TAP-2.5D. 
    more » « less
  2. Fast-evolving artificial intelligence (AI) algorithms such as large language models have been driving the ever increasing computing demands in today’s data centers. Heterogeneous computing with domain-specific architectures (DSAs) brings many opportunities when scaling up and scaling out the computing system. In particular, heterogeneous chiplet architecture is favored to keep scaling up and scaling out the system as well as to reduce the design complexity and the cost stemming from the traditional monolithic chip design. However, how to interconnect computing resources and orchestrate heterogeneous chiplets is the key to success. In this paper, we first discuss the diversity and evolving demands of different AI workloads. We discuss how chiplet brings better cost efficiency and shorter time to market. Then we discuss the challenges in establishing chiplet interface standards, packaging, and security issues. We further discuss the software programming challenges in chiplet systems. 
    more » « less
  3. Heterogeneous chiplets have been proposed for accelerating high-performance computing tasks. Integrated inside one package, CPU and GPU chiplets can share a common interconnection network that can be implemented through the interposer. However, CPU and GPU applications have very different traffic patterns in general. Without effective management of the network resource, some chiplets can suffer significant performance degradation because the network bandwidth is taken away by communication-intensive applications. Therefore, techniques need to be developed to effectively manage the shared network resources. In a chiplet-based system, resource management needs to not only react in real-time but also be cost-efficient. In this work, we propose a reconfigurable network architecture, leveraging Kalman Filter to make accurate predictions on network resources needed by the applications and then adaptively change the resource allocation. Using our design, the network bandwidth can be fairly allocated to avoid starvation or performance degradation. Our evaluation results show that the proposed reconfigurable interconnection network can dynamically react to the changes in traffic demand of the chiplets and improve the system performance with low cost and design complexity. 
    more » « less
  4. Heterogeneous chiplets have been proposed for accelerating high-performance computing tasks. Integrated inside one package, CPU and GPU chiplets can share a common interconnection network that can be implemented through the interposer. However, CPU and GPU applications have very different traffic patterns in general. Without effective management of the network resource, some chiplets can suffer significant performance degradation because the network bandwidth is taken away by communication-intensive applications. Therefore, techniques need to be developed to effectively manage the shared network resources. In a chiplet-based system, resource management needs to not only react in real-time but also be cost-efficient. In this work, we propose a reconfigurable network architecture, leveraging Kalman Filter to make accurate predictions on network resources needed by the applications and then adaptively change the resource allocation. Using our design, the network bandwidth can be fairly allocated to avoid starvation or performance degradation. Our evaluation results show that the proposed reconfigurable interconnection network can dynamically react to the changes in traffic demand of the chiplets and improve the system performance with low cost and design complexity. 
    more » « less
  5. Chiplet-based architectures have been proposed to scale computing systems for deep neural networks (DNNs). Prior work has shown that for the chiplet-based DNN accelerators, the electrical network connecting the chiplets poses a major challenge to system performance, energy consumption, and scalability. Some emerging interconnect technologies such as silicon photonics can potentially overcome the challenges facing electrical interconnects as photonic interconnects provide high bandwidth density, superior energy efficiency, and ease of implementing broadcast and multicast operations that are prevalent in DNN inference. In this paper, we propose a chiplet-based architecture named SPRINT for DNN inference. SPRINT uses a global buffer to simplify the data transmission between storage and computation, and includes two novel designs: (1) a reconfigurable photonic network that can support diverse communications in DNN inference with minimal implementation cost, and (2) a customized dataflow that exploits the ease of broadcast and multicast feature of photonic interconnects to support highly parallel DNN computations. Simulation studies using ResNet50 DNN model show that SPRINT achieves 46% and 61% execution time and energy consumption reduction, respectively, as compared to other state-of-the-art chiplet-based architectures with electrical or photonic interconnects. 
    more » « less