skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Decompositions of Augmented Bergman Complexes
The augmented Bergman complex of a closure operator on a finite set interpolates between the order complex of proper flats and the independence complex of the operator. In 2020, Braden, Huh, Matherne, Proudfoot, and Wang showed that augmented Bergman complexes of matroids are always gallery-connected, and recently Bullock, Kelley, Reiner, Ren, Shemy, Shen, Sun, Tao, and Zhang strengthened gallery-connected to shellable by providing two classes of shelling orders: flag-to-basis shellings and basis-to-flag shellings.  We show that augmented Bergman complexes of matroids are vertex decomposable, a stronger property than shellable. We also prove that the augmented Bergman complex of any closure operator is shellable if and only if the order complex of its lattice of flats (that is, its non-augmented Bergman complex) is shellable. As a consequence, an augmented Bergman complex is shellable if and only if it admits a flag-to-basis shelling. Perhaps surprisingly, the same does not hold for basis-to-flag shellings: we describe a closure operator whose augmented Bergman complex is shellable, but has no shelling order with bases appearing first.   more » « less
Award ID(s):
2103206
PAR ID:
10542978
Author(s) / Creator(s):
Publisher / Repository:
Electronic Journal of Combinatorics
Date Published:
Journal Name:
The Electronic Journal of Combinatorics
Volume:
30
Issue:
1
ISSN:
1077-8926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The augmented Bergman complex of a matroid is a simplicial complex introduced recently in work of Braden, Huh, Matherne, Proudfoot and Wang.  It may be viewed as a hybrid of two well-studied pure shellable simplicial complexes associated to matroids: the independent set complex and Bergman complex. It is shown here that the augmented Bergman complex is also shellable, via two different families of shelling orders.  Furthermore, comparing the description of its homotopy type induced from the two shellings re-interprets a known convolution formula counting bases of the matroid. The representation of the automorphism group of the matroid on the homology of the augmented Bergman complex turns out to have a surprisingly simple description. This last fact is generalized to closures beyond those coming from a matroid. 
    more » « less
  2. Munemasa, Akihiro; Murai, Satoshi; Rhoades, Brendon; Speyer, David; Maldeghem, Hendrik Van (Ed.)
    We study the behavior of h -vectors associated to matroid complexes under weak maps, or inclusions of matroid polytopes. Specifically, we show that the h -vector of the order complex of the lattice of flats of a matroid is component-wise non-increasing under a weak map. This result extends to the flag h -vector. We note that the analogous result also holds for independence complexes and rank-preserving weak maps. 
    more » « less
  3. Leclerc and Zelevinsky, motivated by the study of quasi-commuting quantum flag minors, introduced the notions of strongly separated and weakly separated collections. These notions are closely related to the theory of cluster algebras, to the combinatorics of the double Bruhat cells, and to the totally positive Grassmannian. A key feature, called the purity phenomenon, is that every maximal by inclusion strongly (resp., weakly) separated collection of subsets in $[n]$ has the same cardinality. In this paper, we extend these notions and define $$\mathcal{M}$$-separated collections for any oriented matroid $$\mathcal{M}$$. We show that maximal by size $$\mathcal{M}$$-separated collections are in bijection with fine zonotopal tilings (if $$\mathcal{M}$$ is a realizable oriented matroid), or with one-element liftings of $$\mathcal{M}$$ in general position (for an arbitrary oriented matroid). We introduce the class of pure oriented matroids for which the purity phenomenon holds: an oriented matroid $$\mathcal{M}$$ is pure if $$\mathcal{M}$$-separated collections form a pure simplicial complex, i.e., any maximal by inclusion $$\mathcal{M}$$-separated collection is also maximal by size. We pay closer attention to several special classes of oriented matroids: oriented matroids of rank $$3$$, graphical oriented matroids, and uniform oriented matroids. We classify pure oriented matroids in these cases. An oriented matroid of rank $$3$$ is pure if and only if it is a positroid (up to reorienting and relabeling its ground set). A graphical oriented matroid is pure if and only if its underlying graph is an outerplanar graph, that is, a subgraph of a triangulation of an $$n$$-gon. We give a simple conjectural characterization of pure oriented matroids by forbidden minors and prove it for the above classes of matroids (rank $$3$$, graphical, uniform). 
    more » « less
  4. For $$1<\infty$$, we emulate the Bergman projection on Reinhardt domains by using a Banach-space basis of $L^p$-Bergman space. The construction gives an integral kernel generalizing the ($L^2$) Bergman kernel. The operator defined by the kernel is shown to be an absolutely bounded projection on the $L^p$-Bergman space on a class of domains where the $L^p$-boundedness of the Bergman projection fails for certain $$p \neq 2$$. As an application, we identify the duals of these $L^p$-Bergman spaces with weighted Bergman spaces. 
    more » « less
  5. null (Ed.)
    We prove a conjecture of Thomas Lam that the face posets of stratified spaces of planar resistor networks are shellable. These posets are called uncrossing partial orders. This shellability result combines with Lam's previous result that these same posets are Eulerian to imply that they are CW posets, namely that they are face posets of regular CW complexes. Certain subposets of uncrossing partial orders are shown to be isomorphic to type A Bruhat order intervals; our shelling is shown to coincide on these intervals with a Bruhat order shelling which was constructed by Matthew Dyer using a reflection order. Our shelling for uncrossing posets also yields an explicit shelling for each interval in the face posets of the edge product spaces of phylogenetic trees, namely in the Tuffley posets, by virtue of each interval in a Tuffley poset being isomorphic to an interval in an uncrossing poset. This yields a more explicit proof of the result of Gill, Linusson, Moulton and Steel that the CW decomposition of Moulton and Steel for the edge product space of phylogenetic trees is a regular CW decomposition. 
    more » « less