The big graph database provides strong modeling capabilities and efficient querying for complex applications. Subgraph isomorphism which finds exact matches of a query graph in the database efficiently, is a challenging problem. Current subgraph isomorphism approaches mostly are based on the pruning strategy proposed by Ullmann. These techniques have two significant drawbacks- first, they are unable to efficiently handle complex queries, and second, their implementations need the large indexes that require large memory resources. In this paper, we describe a new subgraph isomorphism approach, the HyGraph algorithm, that is efficient both in querying and with memory requirements for index creation. We compare the HyGraph algorithm with two popular existing approaches, GraphQL and Cypher using complexity measures and experimentally using three big graph data sets—(1) a country-level population database, (2) a simulated bank database, and (3) a publicly available World Cup big graph database. It is shown that the HyGraph solution performs significantly better (or equally) than competing algorithms for the query operations on these big databases, making it an excellent candidate for subgraph isomorphism queries in real scenarios.
more » « less- Award ID(s):
- 1901150
- PAR ID:
- 10543323
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Big Data
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2196-1115
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A subgraph query q that finds as output all its subgraph-isomorphic embeddings from a data graph g has been core to modern declarative querying in large graphs. In this paper, we address subgraph queries with the availability of query workload information, W = {w1,...,wn}, where wi ∈ W is a previously issued query with all its subgraph isomorphic embeddings cached beforehand. We introduce a workload-aware subgraph querying framework, WaSQ, that leverages query workload for subgraph query rewriting, search plan refinement, partial results reusing, and false positive filtering towards facilitating the whole subgraph querying process. Experimental studies in real-world graphs demonstrate that WaSQ achieves significant and consistent performance gains in comparison with state-of-the-art, workload-oblivious solutions for large-scale subgraph querying.more » « less
-
Finding frequent subgraph patterns in a big graph is an important problem with many applications such as classifying chemical compounds and building indexes to speed up graph queries. Since this problem is NP-hard, some recent parallel systems have been developed to accelerate the mining. However, they often have a huge memory cost, very long running time, suboptimal load balancing, and possibly inaccurate results. In this paper, we propose an efficient system called T-FSM for parallel mining of frequent subgraph patterns in a big graph. T-FSM adopts a novel task-based execution engine design to ensure high concurrency, bounded memory consumption, and effective load balancing. It also supports a new anti-monotonic frequentness measure called Fraction-Score, which is more accurate than the widely used MNI measure. Our experiments show that T-FSM is orders of magnitude faster than SOTA systems for frequent subgraph pattern mining. Our system code has been released at https://github.com/lyuheng/T-FSM.more » « less
-
Attributed subgraph matching is a powerful tool for explorative mining of large attributed networks. In many applications (e.g., network science of teams, intelligence analysis, finance informatics), the user might not know what exactly s/he is looking for, and thus require the user to constantly revise the initial query graph based on what s/he finds from the current matching results. A major bottleneck in such an interactive matching scenario is the efficiency, as simply rerunning the matching algorithm on the revised query graph is computationally prohibitive. In this paper, we propose a family of effective and efficient algorithms (FIRST) to support interactive attributed subgraph matching. There are two key ideas behind the proposed methods. The first is to recast the attributed subgraph matching problem as a cross-network node similarity problem, whose major computation lies in solving a Sylvester equation for the query graph and the underlying data graph. The second key idea is to explore the smoothness between the initial and revised queries, which allows us to solve the new/updated Sylvester equation incrementally, without re-solving it from scratch. Experimental results show that our method can achieve (1) up to 16x speed-up when applying on networks with 6M$+$ nodes; (2) preserving more than 90% accuracy compared with existing methods; and (3) scales linearly with respect to the size of the data graph.more » « less
-
Shortest-path computation on graphs is one of the most well-studied problems in algorithmic theory. An aspect that has only recently attracted attention is the use of databases in combination with graph algorithms, so-called distance oracles, to compute shortest-path queries on large graphs. To this purpose, we propose a novel, efficient, pure-SQL framework for answering exact distance queries on large-scale graphs, implemented entirely on an open-source database engine. Our COLD framework (COmpressed Labels on the Database) may answer multiple distance queries (vertex-to-vertex, one-to-many, k-Nearest Neighbors, Reverse k-Nearest Neighbors, Reverse k-Farthest Neighbors and Top-k Range) not handled by previous methods, rendering it a complete database solution for a variety of practical large-scale graph applications. Our experimentation shows that COLD outperforms existing approaches (including popular graph databases) in terms of query time and efficiency, while requiring significantly less storage space than these methods.more » « less
-
null (Ed.)Query-based explanations for missing answers identify which operators of a query are responsible for the failure to return a missing answer of interest. This type of explanations has proven useful, e.g., to debug complex analytical queries. Such queries are frequent in big data systems such as Apache Spark. We present a novel approach to produce query-based explanations. It is the first to support nested data and to consider operators that modify the schema and structure of the data (e.g., nesting, projections) as potential causes of missing answers. To efficiently compute explanations, we propose a heuristic algorithm that applies two novel techniques: (i) reasoning about multiple schema alternatives for a query and (ii) re-validating at each step whether an intermediate result can contribute to the missing answer. Using an implementation on Spark, we demonstrate that our approach is the first to scale to large datasets while often finding explanations that existing techniques fail to identify.more » « less