skip to main content


This content will become publicly available on March 27, 2025

Title: The JWST Resolved Stellar Populations Early Release Science Program. V. DOLPHOT Stellar Photometry for NIRCam and NIRISS
Abstract

We present NIRCam and NIRISS modules for DOLPHOT, a widely used crowded-field stellar photometry package. We describe details of the modules including pixel masking, astrometric alignment, star finding, photometry, catalog creation, and artificial star tests. We tested these modules using NIRCam and NIRISS images of M92 (a Milky Way globular cluster), Draco II (an ultrafaint dwarf galaxy), and Wolf–Lundmark–Mellote (a star-forming dwarf galaxy). DOLPHOT’s photometry is highly precise, and the color–magnitude diagrams are deeper and have better definition than anticipated during original program design in 2017. The primary systematic uncertainties in DOLPHOT’s photometry arise from mismatches in the model and observed point-spread functions (PSFs) and aperture corrections, each contributing ≲0.01 mag to the photometric error budget. Version 1.2 of WebbPSF models, which include charge diffusion and interpixel capacitance effects, significantly reduced PSF-related uncertainties. We also observed minor (≲0.05 mag) chip-to-chip variations in NIRCam’s zero-points, which will be addressed by the JWST flux calibration program. Globular cluster observations are crucial for photometric calibration. Temporal variations in the photometry are generally ≲0.01 mag, although rare large misalignment events can introduce errors up to 0.08 mag. We provide recommended DOLPHOT parameters, guidelines for photometric reduction, and advice for improved observing strategies. Our Early Release Science DOLPHOT data products are available on MAST, complemented by comprehensive online documentation and tutorials for using DOLPHOT with JWST imaging data.

 
more » « less
Award ID(s):
2233781
PAR ID:
10543327
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
271
Issue:
2
ISSN:
0067-0049
Page Range / eLocation ID:
47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the JWST Resolved Stellar Populations Early Release Science (ERS) program. We obtained 27.5 hr of NIRCam and NIRISS imaging of three targets in the Local Group (Milky Way globular cluster M92, ultrafaint dwarf galaxy DracoII, and star-forming dwarf galaxy WLM), which span factors of ∼105in luminosity, ∼104in distance, and ∼105in surface brightness. We describe the survey strategy, scientific and technical goals, implementation details, present select NIRCam color–magnitude diagrams (CMDs), and validate the NIRCam exposure time calculator (ETC). Our CMDs are among the deepest in existence for each class of target. They touch the theoretical hydrogen-burning limit in M92 (<0.08M;MF090W∼ +13.6), include the lowest-mass stars observed outside the Milky Way in Draco II (0.09M;MF090W∼ +12.1), and reach ∼1.5 mag below the oldest main-sequence turnoff in WLM (MF090W∼ +4.6). The PARSEC stellar models provide a good qualitative match to the NIRCam CMDs, though they are ∼0.05 mag too blue compared to M92 F090W − F150W data. Our CMDs show detector-dependent color offsets ranging from ∼0.02 mag in F090W – F150W to ∼0.1 mag in F277W – F444W; these appear to be due to differences in the zero-point calibrations among the detectors. The NIRCam ETC (v2.0) matches the signal-to-noise ratios based on photon noise in uncrowded fields, but the ETC may not be accurate in more crowded fields, similar to what is known for the Hubble Space Telescope. We release the point-source photometry package DOLPHOT, optimized for NIRCam and NIRISS, for the community.

     
    more » « less
  2. Abstract

    The Prime Extragalactic Areas for Reionization and Lensing Science, a James Webb Space Telescope (JWST) GTO program, obtained a set of unique NIRCam observations that have enabled us to significantly improve the default photometric calibration across both NIRCam modules. The observations consisted of three epochs of 4-band (F150W, F200W, F356W, and F444W) NIRCam imaging in the Spitzer IRAC Dark Field (IDF). The three epochs were six months apart and spanned the full duration of Cycle 1. As the IDF is in the JWST continuous viewing zone, we were able to design the observations such that the two modules of NIRCam, modules A and B, were flipped by 180° and completely overlapped each other’s footprints in alternate epochs. We were therefore able to directly compare the photometry of the same objects observed with different modules and detectors, and we found significant photometric residuals up to ∼0.05 mag in some detectors and filters, for the default version of the calibration files that we used (jwst_1039.pmap). Moreover, there are multiplicative gradients present in the data obtained in the two long-wavelength bands. The problem is less severe in the data reduced using the latest pmap (jwst_1130.pmapas of 2023 September), but it is still present, and is non-negligible. We provide a recipe to correct for this systematic effect to bring the two modules onto a more consistent calibration, to a photometric precision better than ∼0.02 mag.

     
    more » « less
  3. Context. The typically large distances, extinction, and crowding of Galactic supermassive star clusters (stellar clusters more massive than 104M) have so far hampered the identification of their very low mass members, required to extend our understanding of star and planet formation, and early stellar evolution, to the extremely energetic star-forming environment typical of starbursts. This situation has now evolved thanks to theJames WebbSpace Telescope (JWST), and its unmatched resolution and sensitivity in the infrared.

    Aims. In this paper, the third of the series of the Extended Westerlund 1 and 2 Open Clusters Survey (EWOCS), we present JWST/NIRCam and JWST/MIRI observations of the supermassive star cluster Westerlund 1. These observations are specifically designed to unveil the cluster members down to the brown dwarf mass regime, and to allow us to select and study the protoplane-tary disks in the cluster and to study the mutual feedback between the cluster members and the surrounding environment.

    Methods. Westerlund 1 was observed as part of JWST GO-1905 for 23.6 hours. The data have been reduced using the JWST calibration pipeline, together with specific tools necessary to remove artifacts, such as the 1 /frandom noise in NIRCam images. Source identification and photometry were performed withDOLPHOT.

    Results. The MIRI images show a plethora of different features. Diffuse nebular emission is observed around the cluster, which is typically composed of myriads of droplet-like features pointing toward the cluster center or the group of massive stars surrounding the Wolf–Rayet star W72/A. A long pillar is also observed in the northwest. The MIRI images also show resolved shells and outflows surrounding the M-type supergiants W20, W26, W75, and W237, the sgB[e] star W9 and the yellow hypergiant W4. Some of these shells have been observed before at other wavelengths, but never with the level of detail provided by JWST. The color-magnitude diagrams built using the NIRCam photometry show a clear cluster sequence, which is marked in its upper part by the 1828 NIRCam stars with X-ray counterparts. NIRCam observations using the F115W filter have reached the 23.8 mag limit with 50% completeness (roughly corresponding to a 0.06 M0 brown dwarf).

     
    more » « less
  4. ABSTRACT

    NGC 6822 is a nearby (∼490 kpc) non-interacting low-metallicity (0.2 Z⊙) dwarf galaxy which hosts several prominent H ii regions, including sites of highly embedded active star formation. In this work, we present an imaging survey of NGC 6822 conducted with the Near Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI) onboard JWST. We describe the data reduction, source extraction, and stellar population identifications from combined near- and mid-infrared (IR) photometry. Our NIRCam observations reach 7 mag deeper than previous JHKs surveys of this galaxy, which were sensitive to just below the tip of the red giant branch (TRGB). These JWST observations thus reveal for the first time in the near-IR the red clump stellar population and extend nearly 3 mag deeper. In the mid-IR, we observe roughly 2 mag below the TRGB with the MIRI F770W and F1000W filters. With these improvements in sensitivity, we produce a catalogue of ∼900 000 point sources over an area of ∼6.0 × 4.3 arcmin2. We present several NIRCam and MIRI colour–magnitude diagrams and discuss which colour combinations provide useful separations of various stellar populations to aid in future JWST observation planning. Finally, we find populations of carbon- and oxygen-rich asymptotic giant branch stars which will assist in improving our understanding of dust production in low-metallicity, early Universe analogue galaxies.

     
    more » « less
  5. ABSTRACT

    Over the past year, JWST has uncovered galaxies at record-breaking distances up to z ∼ 13. The JWST UNCOVER (ultra-deep NIRSpec and NIRcam observations before the epoch of reionization) program has obtained ultra-deep multiwavelength NIRCam imaging of the massive galaxy cluster A2744 over ∼45 arcmin2 down to ∼29.5 AB mag. Here, we present a robust ultraviolet (UV) luminosity function derived through lensing clusters at 9 < z < 12. Using comprehensive end-to-end simulations, we account for all lensing effects and systematic uncertainties in deriving both the amplification factors and the effective survey volume. Our results confirm the intriguing excess of UV-bright galaxies (MUV <−20 AB mag) previously reported at z > 9 in recent JWST studies. In particular, a double power-law (DPL) describes better the bright end of the luminosity function compared to the classical Schechter form. The number density of these bright galaxies is 10–100 times larger than theoretical predictions and previous findings based on Hubble Space Telescope (HST) observations. Additionally, we measure a star formation rate density of ρSFR = 10−2.64 M⊙ yr−1 Mpc−3 at these redshifts, which is 4–10 times higher than galaxy formation models that assume a constant star formation efficiency. Future wide-area surveys and accurate modelling of lensing-assisted observations will reliably constrain both the bright and the dim end of the UV luminosity function at z > 9, which will provide key benchmarks for galaxy formation models.

     
    more » « less