Abstract Stomata play a critical role in regulating plant responses to climate. Where sister species differ in stomatal traits, interspecific gene flow can influence the evolutionary trajectory of trait variation, with consequences to adaptation.Leveraging six latitudinally-distributed transects spanning the natural hybrid zone betweenPopulus trichocarpa–P. balsamifera, we used whole genome resequencing and replicate common garden experiments to test the role that interspecific gene flow and selection play to stomatal trait evolution.While species-specific differences in the distribution of stomata persist betweenP. balsamiferaandP. trichocarpa, hybrids on average resembledP. trichocarpa. Admixture mapping identified several candidate genes associated with stomatal trait variation in hybrids includingTWIST, a homolog ofSPEECHLESSinArabidopsis, that initiates stomatal development via asymmetric cell divisions. Geographic clines revealed candidate genes deviating from genome-wide average patterns of introgression, suggesting restricted gene flow and the maintenance of adaptive differences. Climate associations, particularly with precipitation, indicated selection shapes local ancestry at candidate genes across transects.These results highlight the role of climate in shaping stomatal trait evolution inPopulusand demonstrate how interspecific gene flow creates novel genetic combinations that may enhance adaptive potential in changing environments. 
                        more » 
                        « less   
                    
                            
                            The genomics and physiology of abiotic stressors associated with global elevational gradients in Arabidopsis thaliana
                        
                    
    
            Summary Phenotypic and genomic diversity inArabidopsis thalianamay be associated with adaptation along its wide elevational range, but it is unclear whether elevational clines are consistent among different mountain ranges.We took a multi‐regional view of selection associated with elevation. In a diverse panel of ecotypes, we measured plant traits under alpine stressors (low CO2partial pressure, high light, and night freezing) and conducted genome‐wide association studies.We found evidence of contrasting locally adaptive regional clines. Western Mediterranean ecotypes showed low water use efficiency (WUE)/early flowering at low elevations to high WUE/late flowering at high elevations. Central Asian ecotypes showed the opposite pattern. We mapped different candidate genes for each region, and some quantitative trait loci (QTL) showed elevational and climatic clines likely maintained by selection. Consistent with regional heterogeneity, trait and QTL clines were evident at regional scales (c. 2000 km) but disappeared globally. Antioxidants and pigmentation rarely showed elevational clines. High elevation east African ecotypes might have higher antioxidant activity under night freezing.Physiological and genomic elevational clines in different regions can be unique, underlining the complexity of local adaptation in widely distributed species, while hindering global trait–environment or genome–environment associations. To tackle the mechanisms of range‐wide local adaptation, regional approaches are thus warranted. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1927009
- PAR ID:
- 10543368
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 244
- Issue:
- 5
- ISSN:
- 0028-646X
- Format(s):
- Medium: X Size: p. 2062-2077
- Size(s):
- p. 2062-2077
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Hines, Heather (Ed.)Abstract Biogeographic clines in morphology along environmental gradients can illuminate forces influencing trait evolution within and between species. Latitude has long been studied as a driver of morphological clines, with a focus on body size and temperature. However, counteracting environmental pressures may impose constraints on body size. In montane landscapes, declines in air density with elevation can negatively impact flight performance in volant species, which may contribute to selection for reduced body mass despite declining temperatures. We examine morphology in two bumble bee (Hymenoptera: Apidae: Bombus Latreille) species, Bombus vancouverensis Cresson and Bombus vosnesenskii Radoszkowski, across mountainous regions of California, Oregon, and Washington, United States. We incorporate population genomic data to investigate the relationship between genomic ancestry and morphological divergence. We find that B. vancouverensis, which tends to be more specialized for high elevations, exhibits stronger spatial-environmental variation, being smaller in the southern and higher elevation parts of its range and having reduced wing loading (mass relative to wing area) at high elevations. Bombus vosnesenskii, which is more of an elevational generalist, has substantial trait variation, but spatial-environmental correlations are weak. Population structure is stronger in the smaller B. vancouverensis, and we find a significant association between elevation and wing loading after accounting for genetic structure, suggesting the possibility of local adaptation for this flight performance trait. Our findings suggest that some conflicting results for body size trends may stem from distinct environmental pressures that impact different aspects of bumble bee ecology, and that different species show different morphological clines in the same region.more » « less
- 
            Abstract Elevations >2,000 m represent consistently harsh environments for small endotherms because of abiotic stressors such as cold temperatures and hypoxia.These environmental stressors may limit the ability of populations living at these elevations to respond to biotic selection pressures—such as parasites or pathogens—that in other environmental contexts would impose only minimal energetic‐ and fitness‐related costs.We studied deer mice (Peromyscus maniculatus rufinus) living along two elevational transects (2,300–4,400 m) in the Colorado Rockies and found that infection prevalence by botfly larvae (Cuterebridae) declined at higher elevations. We found no evidence of infections at elevations >2,400 m, but that 33.6% of all deer mice, and 52.2% of adults, were infected at elevations <2,400 m.Botfly infections were associated with reductions in haematocrit levels of 23%, haemoglobin concentrations of 27% and cold‐induced VO2maxmeasures of 19% compared to uninfected individuals. In turn, these reductions in aerobic performance appeared to influence fitness, as infected individuals exhibited 19‐34% lower daily survival rates.In contrast to studies at lower elevations, we found evidence indicating that botfly infections influence the aerobic capabilities and fitness of deer mice living at elevations between 2,000 and 2,400 m. Our results therefore suggest that the interaction between botflies and small rodents is likely highly context‐dependent and that, more generally, high‐elevation populations may be susceptible to additional biotic selection pressures. Aplain language summaryis available for this article.more » « less
- 
            Abstract Tropical elevation gradients support highly diverse assemblages, but competing hypotheses suggest either peak species richness in lowland rainforests or at mid‐elevations. We investigated scolytine beetles—phloem, ambrosia and seed‐feeding beetles—along a tropical elevational gradient in Papua New Guinea.Highly standardised sampling from 200 to 3700 m above sea level (asl) identified areas of highest and lowest species richness, abundance and other biodiversity variables.Using passive flight intercept traps at eight elevations from 200 to 3500 m asl, we collected over 9600 specimens representing 215 species. Despite extensive sampling, species accumulation curves suggest that diversity was not fully exhausted.Scolytine species richness followed a unimodal distribution, peaking between 700 and 1200 m asl, supporting prior findings of highest diversity at low‐to‐mid elevations.Alternative models, such as a monotonous decrease from lowlands to higher elevations and a mid‐elevation maximum, showed lesser fit to our data. Abundance is greatest at the lowest sites, driven by a few extremely abundant species. The turnover rate—beta diversity between elevation steps—is greatest between the highest elevations.Among dominant tribes—Dryocoetini, Xyleborini and Cryphalini—species richness peaked between 700 and 2200 m asl. Taxon‐specific analyses revealed distinct patterns:Euwallaceaspp. abundance uniformly declined with elevation, while other genera were driven by dominant species at different elevations.Coccotrypesand phloem‐feedingCryphalushave undergone evolutionary radiations in New Guinea, with many species still undescribed. Species not yet known to science are most likely to be found at lower and middle elevations, where overall diversity is highest.more » « less
- 
            ABSTRACT Plants require water and nutrients for survival, although the effects of their availabilities on plant fitness differ amongst species. Genome size variation, within and across species, is suspected to influence plant water and nutrient requirements, but little is known about how variations in these resources concurrently affect plant fitness based on genome size. We examined how genome size variation between autopolyploid cytotypes influences plant morphological and physiological traits, and whether cytotype‐specific trait responses differ based on water and/or nutrient availability.Diploid and autotetraploidSolidago gigantea(Giant Goldenrod) were grown in a greenhouse under four soil water:N+P treatments (L:L, L:H, H:L, H:H), and stomata characteristics (size, density), growth (above‐ and belowground biomass, R/S), and physiological (Anet,E,WUE) responses were measured.Resource availabilities and cytotype identity influenced some plant responses but their effects were independent of each other. Plants grown in high‐water and nutrient treatments were larger, plants grown in low‐water or high‐nutrient treatments had higherWUEbut lowerE, andAnetandErates decreased as plants aged. Autotetraploids also had larger and fewer stomata, higher biomass and largerAnetthan diploids.Nutrient and water availability could influence intra‐ and interspecific competitive outcomes. AlthoughS. giganteacytotypes were not differentially affected by resource treatments, genome size may influence cytogeographic range patterning and population establishment likelihood. For instance, the larger size of autotetraploidS. giganteamight render them more competitive for resources and niche space than diploids.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
