A physically-informed continuum crystal plasticity model is presented to elucidate deformation mechanisms, dislocation evolution and the non-Schmid effect in body-centered-cubic (bcc) tantalum widely used as a key structural material for mechanical and thermal extremes. We show the unified structural modeling framework informed by mesoscopic dislocation dynamics simulations is capable of capturing salient features of the large inelastic behavior of tantalum at quasi-static (10−3 s−1) to extreme strain rates (5000 s−1) and at low (77 K) to high temperatures (873 K) at both single- and polycrystal levels. We also present predictive capabilities of the model for microstructural evolution in the material. To this end, we investigate the effects of dislocation interactions on slip activities, instability and the non-Schmid behavior at the single crystal level. Furthermore, ex situ measurements on crystallographic texture evolution and dislocation density growth are carried out for polycrystal tantalum specimens at increasing strains. Numerical simulation results also support that the modeling framework is capable of capturing the main features of the polycrystal behavior over a wide range of strains, strain rates and temperatures. The theoretical, experimental and numerical results at both single- and polycrystal levels provide critical insight into the underlying physical pictures for micro- and macroscopic responses and their relations in this important class of refractory bcc materials undergoing large inelastic deformations.
more »
« less
Study of the Thermomechanical Behavior of Single-Crystal and Polycrystal Copper
This research paper presents an experimental, theoretical, and numerical study of the thermomechanical behavior of single-crystal and polycrystal copper under uniaxial stress compression loading at varying rates of deformation. The thermomechanical theory is based on a thermodynamically consistent framework for single-crystal face-centered cubic metals, and assumes that all plastic power is partitioned between stored energy due to dislocation structure evolution (configurational) and thermal (kinetic vibrational) energy. An expression for the Taylor–Quinney factor is proposed, which is a simple function of effective temperature and is allowed by second-law restrictions. This single-crystal model is used for the study of single- and polycrystal copper. New polycrystal thermomechanical experimental results are presented at varying strain rates. The temperature evolution on the surface of the polycrystal samples is measured using mounted thermocouples. Thermomechanical numerical single- and polycrystal simulations were performed for all experimental conditions ranging between 10−3 and 5 × 103 s−1. A Taylor homogenization model is used to represent polycrystal behavior. The numerical simulations of all conditions compare reasonable well with experimental results for both stress and temperature evolution. Given our lack of understanding of the mechanisms responsible for the coupling of dislocation glide and atomic vibration, this implies that the proposed theory is a reasonably accurate approximation of the single-crystal thermomechanics.
more »
« less
- Award ID(s):
- 2051355
- PAR ID:
- 10543395
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Metals
- Volume:
- 14
- Issue:
- 9
- ISSN:
- 2075-4701
- Page Range / eLocation ID:
- 1086
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In a crystalline solid under mechanical stress, a Frank-Read source is a pinned dislocation segment that repeatedly bows and detaches, generating concentric dislocation loops. We demonstrate that, in nematic liquid crystals, an analogous Frank-Read mechanism can generate concentric disclination loops. Using experiment, simulation, and theory, we study a disclination segment pinned between surface defects on one substrate in a nematic cell. Under applied twist of the nematic director, the pinned segment bows and emits a new disclination loop which expands, leaving the original segment intact; loop emission repeats for each additional 180° of applied twist. We present experimental micrographs showing loop expansion and snap-off, numerical simulations of loop emission under both quasistatic and dynamic loading, and theoretical analysis considering both free energy minimization and the balance of competing forces. We find that the critical stress for disclination loop emission scales as the inverse of segment length and changes as a function of strain rate and temperature, in close analogy to the Frank-Read source mechanism in crystals. Lastly, we discuss how Frank-Read sources could be used to modify microstructural evolution in both passive and active nematics.more » « less
-
This study explores the latent thermal energy storage potential of an organic phase change material with porous copper foam and its applicability in electronic cooling under varying heat load conditions. The organic phase change material, n-eicosane, is known for its inherently low thermal conductivity of 0.15 W/mK, rendering it vulnerable during power spikes despite its abundant latent heat energy for phase transition from solid to liquid. Porous copper foams are often integrated into n-eicosane to enhance the composite’s thermal conductivity. However, the volume fraction of the phase change material in the porous foam that optimally improves the thermal performance can be dependent on the boundary condition, the cut-off temperature, and the thickness. A finite difference numerical model was developed and utilized to ascertain the energy consumption for the composite of n-eicosane with two kinds of porous copper foam with varying porosity under different heat rates, cut-off temperatures, and thickness. In addition, the results are compared with a metallic phase change material (gallium), a material chosen with a similar melting point but significantly high thermal conductivity and volumetric latent heat. For validation of the numerical model and to experimentally verify the effect of boundary condition (heat rate), experimental investigation was performed for n-eicosane and high porosity copper foam composite at varying heat rates to observe its melting and solidification behaviors during continuous operation until a cut-off temperature of 70 ◦C is reached. Experiments reveal that heat rate influences the amount of latent energy storage capability until a cutoff temperature is reached. For broad comparison, the numerical model was used to obtain the accessed energy and power density and generate thermal Ragone plots to compare and characterize pure gallium and n-eicosane - porous foam composite with varying volume fractions, cutoff temperature, and thickness under volumetric and gravimetric constraints. Overall, the proposed framework in the form of thermal Ragone plots effectively delineates the optimal points for various combinations of heat rate, cutoff point, and aspect ratio, affirming its utility for comprehensive design guidelines for PCM-based composites for electronic cooling applicationsmore » « less
-
Deshpande, Vikram (Ed.)The yield surface of a material is a criterion at which macroscopic plastic deformation begins. For crystalline solids, plastic deformation occurs through the motion of dislocations, which can be captured by discrete dislocation dynamics (DDD) simulations. In this paper, we predict the yield surfaces and strain-hardening behaviors using DDD simulations and a geometric manifold learning approach. The yield surfaces in the three-dimensional space of plane stress are constructed for single-crystal copper subjected to uniaxial loading along the [100] and [110] directions, respectively. With increasing plastic deformation under loading, the yield surface expands nearly uniformly in all directions, corresponding to isotropic hardening. In contrast, under [110] loading, latent hardening is observed, where the yield surface remains nearly unchanged in the orientations in the vicinity of the loading direction itself but expands in other directions, resulting in an asymmetric shape. This difference in hardening behaviors is attributed to the different dislocation multiplication behaviors on various slip systems under the two loading conditions.more » « less
-
null (Ed.)Continuum dislocation dynamics models of mesoscale plasticity consist of dislocation transport-reaction equations coupled with crystal mechanics equations. The coupling between these two sets of equations is such that dislocation transport gives rise to the evolution of plastic distortion (strain), while the evolution of the latter fixes the stress from which the dislocation velocity field is found via a mobility law. Earlier solutions of these equations employed a staggered solution scheme for the two sets of equations in which the plastic distortion was updated via time integration of its rate, as found from Orowan’s law. In this work, we show that such a direct time integration scheme can suffer from accumulation of numerical errors. We introduce an alternative scheme based on field dislocation mechanics that ensures consistency between the plastic distortion and the dislocation content in the crystal. The new scheme is based on calculating the compatible and incompatible parts of the plastic distortion separately, and the incompatible part is calculated from the current dislocation density field. Stress field and dislocation transport calculations were implemented within a finite element based discretization of the governing equations, with the crystal mechanics part solved by a conventional Galerkin method and the dislocation transport equations by the least squares method. A simple test is first performed to show the accuracy of the two schemes for updating the plastic distortion, which shows that the solution method based on field dislocation mechanics is more accurate. This method then was used to simulate an austenitic steel crystal under uniaxial loading and multiple slip conditions. By considering dislocation interactions caused by junctions, a hardening rate similar to discrete dislocation dynamics simulation results was obtained. The simulations show that dislocations exhibit some self-organized structures as the strain is increased.more » « less
An official website of the United States government

