skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on September 1, 2025

Title: Introducing the PrimeD Framework: Teacher Practice and Professional Development through Shulman’s View of Professionalism

This paper clarifies and expands the definition of teacher professional practice, grounded in the commonplaces of professionalism outlined by Lee Shulman. We present the Professional Development: Research, Implementation, and Evaluation (PrimeD) framework as a lens for transforming professional development into a practice that engages teachers as professionals. This discussion explores teachers’ roles in both their classrooms and the profession. The inclusion of PrimeD evaluation and research in the development and practice of mathematics teachers addresses Shulman’s professionalism commonplaces. PrimeD was tested as a lens for professionalism in mathematics teacher education programs at four universities. In the study, teachers collaborated as professionals on developing and testing novel ways to approach mathematics lessons. In general, teachers’ efforts to conduct structured experimentation in their lessons were disconnected from traditional views of the role of a teacher. As a result, teachers who did develop and test lesson trials in this PD program did not frequently continue experimentation. Typically, teachers wanted to collaborate on testing classroom activities but did not have resources to do so (e.g., time, collaborative planning). Systemic changes are needed to promote sustainable change, allowing teachers to collaborate and share the results of classroom research.

 
more » « less
Award ID(s):
2013250 2013266 2013256
PAR ID:
10543486
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Education Sciences
Date Published:
Journal Name:
Education Sciences
Volume:
14
Issue:
9
ISSN:
2227-7102
Page Range / eLocation ID:
1032
Subject(s) / Keyword(s):
teacher professional development professionalism mathematics education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. These data are for 17 secondary mathematics teacher candidates (TCs) in four university teacher preparation programs, who implemented technology in their classrooms to teach for conceptual understanding in online, hybrid, and face-to-face classes during COVID-19. Using the Professional Development: Research, Implementation, and Evaluation (PrimeD) framework, a Networked Improvement Community (NIC) was formed by teacher candidates, classroom mentor teachers, field experience supervisors, and university faculty to discuss a commonly agreed upon problem of practice and a change idea to implement in the classroom. Through Plan-Do-Study-Act cycles, participants documented their improvement efforts and refinements to the change idea and then reported back to the NIC at the subsequent monthly meeting. The Technology Pedagogical Content Knowledge framework (TPACK) and the TPACK levels rubric (Lyublinskaya & Tournaki, 2011) were used to examine how teacher candidates implemented technology for Mathematics conceptual understanding. The Mathematics Classroom Observation Protocol for Practices (MCOP^2; Gleason, Livers, & Zelkowski, 2015) was used to further examine how effective mathematics teaching practices (e.g., student engagement) were implemented by TCs. 
    more » « less
  2. This paper examines how 17 secondary mathematics teacher candidates (TCs) in four university teacher preparation programs implemented technology in their classrooms to teach for conceptual understanding in online, hybrid, and face to face classes during COVID-19. Using the Professional Development: Research, Implementation, and Evaluation (PrimeD) framework, TCs, classroom mentor teachers, field experience supervisors, and university faculty formed a Networked Improvement Community (NIC) to discuss a commonly agreed upon problem of practice and a change idea to implement in the classroom. Through Plan-Do-Study-Act cycles, participants documented their improvement efforts and refinements to the change idea and then reported back to the NIC at the subsequent monthly meeting. The Technology Pedagogical Content Knowledge framework (TPACK) and the TPACK levels rubric were used to examine how teacher candidates implemented technology for Mathematics conceptual understanding. The Mathematics Classroom Observation Protocol for Practices (MCOP2) was used to further examine how effective mathematics teaching practices (e.g., student engagement) were implemented by TCs. MCOP2 results indicated that TCs increased their use of effective mathematics teaching practices. However, growth in TPACK was not significant. A relationship between TPACK and MCOP2 was not evident, indicating a potential need for explicit focus on using technology for mathematics conceptual understanding. 
    more » « less
  3. Chinn, Clark (Ed.)
    This study analyzes transcripts of conversations in which mathematics teachers and researchers debrief videotaped lessons by, in part, examining aggregated classroom data from the videotaped lesson. We conclude that aggregating data in debrief conversations can support teachers’ concept development when the aggregation a) demonstrates internal contrasts and b) is underscored by participants’ discursive moves. Consequently, we recommend that facilitators seeking to prompt teacher learning use lesson-level aggregations to identify and press on comparisons and distinctions in teaching practice. This study can inform research on teacher learning by unpacking how a common practice—aggregating data—contributes to teachers’ concept development and has implications both for practitioners and for the emerging field of classroom data visualization. 
    more » « less
  4. Bringing Research into the Classroom (BRIC) engaged rural K-12 science teachers in sustained, mentored science research. BRIC’s goal was to equip teachers with the knowledge, skills, and dispositions to provide high-quality biomedical research opportunities for K-12 students and teachers. Programmatic elements included authentic, place-based, microbiology outreach in K-12 classrooms, summer teacher research academies focused on content knowledge and research, and a capstone symposium. Over 9,000 Montana students collected and tested environmental samples to isolate new-toscience bacteriophages (viruses that infect bacteria). University scientists, faculty, and students mentored K-12 teachers and students during classroom outreach visits and teacher research academies. BRIC aimed to increase teacher and student bacteriophage content knowledge and research skills through meaningful, mentored research projects. BRIC researchers hypothesized greater program impacts from intensive teacher professional development combined with classroom outreach, compared to classroom outreach visits alone. Program evaluation compared two cohorts of teachers, which each received all programmatic elements through a four-year, staggered rollout. Teachers and students were assessed for gains in knowledge, skills, and science attitudes. A subset of our evaluation instruments and outcomes, program dissemination, lessons learned, and recommendations for replicating the BRIC model are discussed. 
    more » « less
  5. Abstract

    This paper is part of the special issue on Teacher Learning and Practice within Organizational Contexts. Shifting instructional practices in elementary schools to include more equitable, reform‐based pedagogies is imperative for supporting students’ development as science learners. Teachers need high quality professional development (PD) to learn such practices, but research shows considerable variability in the extent to which teachers implement instructional practices learned during PD. Individual teacher characteristics such as self‐efficacy may influence teacher learning during PD, but only account for part of the variability. The organizational conditions of teachers’ schools and districts may also play a key role in teachers’ implementation of new instructional practices. However, because systematic research in this area in science education is still nascent, it is difficult for districts and PD providers to address organizational barriers to professional learning. To meet this need, we conducted an explanatory mixed‐methods study using surveys (N = 54) and interviews (N = 19) of elementary teachers engaged in equity‐focused, reform‐based science PD, testing the degree to which a conceptually framed set of organizational conditions predicted teacher equity self‐efficacy and instructional practice alignment. Out of the 11 organizational conditions, only teacher professional impact and their sense of autonomy in their instructional practice explained variance in the outcomes. Qualitative findings showed these relationships to be iterative and recursive, rather than linear. Our findings underscore the essential role of teacher professionalism and sense of agency over commonly cited organizational conditions such as materials and labs in supporting teachers to implement more equitable science instructional practices during PD.

     
    more » « less